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Abstract

We consider a mixed version of the Shapley window model, where
large traders are represented as atoms and small traders are repre-
sented by an atomless part. Motivated by the result that a countable
infinity of atoms is neither a necessary nor a sufficient condition for
a Cournot-Nash allocation to be a Walras allocation, we analyze the
asymptotic relationship between the set of the Cournot-Nash alloca-
tions of the strategic market game and the Walras allocations of the
exchange economy with which it is associated. Our main theorem
shows that any sequence of Cournot-Nash allocations of the strategic
market games associated with the partial replications of the exchange
economy has a limit point for each trader and that the assignment de-
termined by these limit points is a Walrasian allocation of the original
economy. Instead of relying on restrictive assumptions on the charac-
teristics of atoms, as in Busetto et al. (2017), our limit theorem relies
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33100 Udine, Italy, and Economix, UPL, Univ Paris Nanterre, CNRS, F92000 Nanterre,
France.

‡Adam Smith Business School, University of Glasgow, Glasgow G12 8QQ, United
Kingdom.

§Economix, UPL, Univ Paris Nanterre, CNRS, F92000 Nanterre, France.
¶Department of Economics, University of Warwick, CV4 7AL Coventry, United

Kingdom.

1



on the characteristics of agents in the atomless part and their endoge-
nously price-taking behavior.
Journal of Economic Literature Classification Numbers: C72, D51.

1 Introduction

Busetto et al. (2011) proved the existence of a Cournot-Nash equilibrium
for the Shapley window model in mixed exchange economies à la Shitovitz,
where large traders are represented as atoms and small traders are repre-
sented by an atomless part (see Shitovitz (1973)). The Shapley window
model belongs to a very fruitful line of research on noncooperative market
games, initiated by Lloyd S. Shapley and Martin Shubik (for a survey of
this literature, see Giraud (2003)). The model was informally introduced
by Lloyd S. Shapley and subsequently formalized by Sahi and Yao (1989)
in the case of exchange economies with a finite number of traders. For this
case, the authors proved the existence of a Cournot-Nash equilibrium. The
proof provided by Busetto et al. (2011) for the mixed market case is based
on the same assumptions used by Sahi and Yao (1989) for the finite case.
In particular, it is required that there are at least two atoms with strictly
positive endowments, continuously differentiable utility functions, and in-
difference curves contained in the strict interior of the commodity space.
These restrictions are stated by Busetto et al. (2011) in their Assumption
4.

Busetto et al. (2017) analyzed the asymptotic behavior of the Cournot-
Nash equilibria of the mixed version of the Shapley window model. They
introduced a concept of replication which they called à la Cournot, since
it extends to a general equilibrium context the original Cournotian idea of
replication: it consists in partially replicating the economy by increasing
only the number of atoms, this way making them asymptotically negligible,
without affecting the atomless part. Under the same assumptions of the
existence theorem proved by Busetto et al. (2011), these authors proved
a theorem establishing that any sequence of Cournot-Nash allocations of
the strategic market games associated with the partial replications of the
exchange economy has a limit point for each trader and that the assignment
determined by these limit points is a Walrasian allocation of the original
economy.

Busetto et al. (2018) proved a new existence theorem for the mixed
version of the Shapley window model, differing from the one proposed by
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Busetto et al. (2011) in that it is essentially based on restrictions on en-
dowments and preferences of the atomless part of the economy rather than
of atoms. In particular, Busetto et al. (2018) removed Assumption 4 in
Busetto et al. (2011) and used the fact – proved by Codognato and Ghosal
(2000) – that traders belonging to the atomless part have an endogenous
“Walrasian” behavior. In the work of 2018, this property was exploited
to show that, under the assumptions that each commodity is held, in the
aggregate, by the atomless part and that traders’ utility functions are con-
tinuous, strongly monotone, quasi-concave, and measurable, any sequence
of prices corresponding to a sequence of Cournot-Nash equilibria has a sub-
sequence which converges to a strictly positive price vector. The authors
used this price convergence result to prove their existence theorem, under
the assumption that the set of commodities is strongly connected through
traders’ characteristics, which imposes a joint restriction on the endowments
and preferences of the atomless part and is a variant of a hypothesis first pro-
posed by Codognato and Ghosal (2000). This assumption, combined with
the continuity properties of the Walrasian correspondence generated by the
atomless part’s behavior, in turn guarantees that the aggregate matrix of
the bids obtained as the limit of a sequence of perturbed Cournot-Nash
equilibria is irreducible.

In this paper, we consider the mixed version of the Shapley window
model in the formulation proposed by Busetto et al. (2018), with the aim
of establishing the asymptotic properties of its equilibria. We use the same
concept of replication à la Cournot introduced by Busetto et al. (2017)
to show a new limit theorem which does not require the restrictions on
atoms stated in their Assumption 4. The proof of the new limit result rests
heavily on the price convergence theorem shown by Busetto et al. (2018).
As a consequence, that result turns out to be merely explained, like those
authors’ existence theorem, in terms of the characteristics of the atomless
part of the economy and the fact that the traders belonging to it have an
exogenous “Walrasian” behavior.

Following Busetto et al. (2017) and Codognato et al. (2015), we provide
two examples which show that the condition that an economy contains a
countably infinite number of atoms is neither necessary nor sufficient to
guarantee that any Cournot-Nash allocation is a Walras allocation.

The paper is organized as follows. In Section 2, we introduce the math-
ematical model. In Section 3, we restate the price convergence theorem.
In Section 4, we introduce the replication à la Cournot. In Section 5, we
prove the existence of an atom-type-symmetric Cournot-Nash equilibrium.
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In Section 6, we state and prove the limit theorem. In Section 7, we discuss
the model. In Section 8, we draw some conclusions from our analysis.

2 Mathematical model

We consider an exchange economy, E , with large traders, represented as
atoms, and small traders, represented by an atomless part. The space of
traders is denoted by the measure space (T, T , µ), where T is the set of
traders, T is the σ-algebra of all µ-measurable subsets of T , and µ is a real
valued, non-negative, countably additive measure defined on T . We assume
that (T, T , µ) is finite, i.e., µ(T ) < +∞. This implies that the measure space
(T, T , µ) contains at most countably many atoms. Let T1 denote the set of
atoms and T0 = T \ T1 the atomless part of T . A null set of traders is a set
of measure 0. Null sets of traders are systematically ignored throughout the
paper. Thus, a statement asserted for “each” trader in a certain set is to
be understood to hold for all such traders except possibly for a null set of
traders. The word “integrable” is to be understood in the sense of Lebesgue.

In the exchange economy, there are l different commodities. A com-
modity bundle is a point in Rl

+. An assignment (of commodity bundles
to traders) is an integrable function x: T → Rl

+. There is a fixed initial
assignment w, satisfying the following assumption.

Assumption 1. w(t) > 0, for each t ∈ T ,
∫
T0

w(t) dµ ≫ 0.

An allocation is an assignment x for which
∫
T x(t) dµ =

∫
T w(t) dµ.

The preferences of each trader t ∈ T are described by a utility function
ut : R

l
+ → R, satisfying the following assumptions.

Assumption 2. ut : R
l
+ → R is continuous, strongly monotone, and quasi-

concave, for each t ∈ T .

Let B denote the Borel σ-algebra of Rl
+. Moreover, let T

⊗
B denote

the σ-algebra generated by all the sets E × F such that E ∈ T and F ∈ B.

Assumption 3. u : T × Rl
+ → R, given by u(t, x) = ut(x), for each t ∈ T

and for each x ∈ Rl
+, is T

⊗
B-measurable.

In order to state our last assumption, we need some preliminary defini-
tions. We denote by L the set of commodities {1, . . . , l}. We say that two
commodities i, j ∈ L stand in relation C if there is a measurable set T i,
with µ(T i) > 0, such that T i = {t ∈ T0 : w

i(t) > 0, wr(t) = 0, for each r ∈
L \ {i}}, ut(·) is differentiable, additively separable in commodity j, i.e.,
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ut(x) = vjt (x
j)+vt(x

1, . . . , xj−1, xj+1, . . . , xl), for each x ∈ Rl
+, and

dvjt (0)
dxj =

+∞, for each t ∈ T i.1 Then, the concept of a set of commodities strongly
connected through traders’ characteristics can be defined as follows.

Definition 1. The set of commodities L is said to be strongly connected
through traders’ characteristics if {(i, j) : iCj} ≠ ∅ and the directed graph
DL(L,C) is strongly connected, i.e., any ordered pair of distinct vertices, i
and j, of DL(L,C) is connected by a path.

We can now state our last assumption.

Assumption 4. The set of commodities L is strongly connected through
traders’ characteristics.

A price vector is a nonnull vector p ∈ Rl
+. Henceforth, we say that a

price vector p is normalized if p ∈ ∆, where ∆ = {p ∈ Rl
+ :

∑l
i=1 p

i = 1}.
Moreover, we denote by ∂∆ the boundary of the unit simplex ∆.

Let X0 : T0 ×∆ \ ∂∆ → P(Rl) be a correspondence such that, for each
t ∈ T0 and for each p ∈ Rl

++, X
0(t, p) = argmax{u(x) : x ∈ Rl

+ and px ≤
pw(t)}. It is well-known that the previous assumptions guarantee that the
correspondence X0(t, ·) is upper hemicontinuous, for each t ∈ T0.

A Walras equilibrium of E is a pair (p∗,x∗), consisting of a price vector
p∗ ∈ ∆\∂∆ and an allocation x∗, such that, for each t ∈ T , ut(x

∗(t)) ≥ ut(y),
for all y ∈ {x ∈ Rl

+ : p∗x = p∗w(t)}. A Walras allocation of E is an
allocation x∗ for which there exists a price vector p∗ ∈ ∆ \∂∆ such that the
pair (p∗,x∗) is a Walras equilibrium of E .

We define now the strategic market game, Γ, associated with E . It
is a slightly reformulated version of the Shapley window model for mixed
economies proposed by Busetto et al. (2011).

A strategy correspondence is a correspondence B : T → P(Rl2
+) such

that, for each t ∈ T , B(t) = {(bij) ∈ Rl2
+ :

∑l
j=1 bij ≤ wi(t), i = 1, . . . , l}.

With some abuse of notation, we denote by b(t) ∈ B(t) a strategy of trader
t, where bij(t), i, j = 1, . . . , l, represents the amount of commodity i that
trader t offers in exchange for commodity j. A strategy selection is an
integrable function b : T → Rl2

+, such that, for each t ∈ T , b(t) ∈ B(t).
Given a strategy selection b, we define the aggregate matrix B̄ to be the

1In this definition, differentiability is to be understood as continuous differentiability
and it includes the case of infinite partial derivatives along the boundary of the consump-
tion set (for a discussion of this case, see, for instance, Kreps (2012), p. 58). Moreover, it
can be proved that the separable utility function used in the definition is the representation
of separable preferences (see, for instance, Kreps (2012), p. 42).
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matrix such that b̄ij = (
∫
T bij(t) dµ), i, j = 1, . . . , l. Moreover, we denote

by b \ b(t) the strategy selection obtained from b by replacing b(t) with
b(t) ∈ B(t), and by B̄ \ b(t) the corresponding aggregate matrix.

The following definitions are borrowed from Sahi and Yao (1989).

Definition 2. A nonnegative square matrix A is said to be irreducible if, for

every pair (i, j), with i ̸= j, there is a positive integer k such that a
(k)
ij > 0,

where a
(k)
ij denotes the ij-th entry of the k-th power Ak of A.

Definition 3. Given a strategy selection b, a normalized price vector p is
said to be market clearing if

p ∈ ∆ \ ∂∆,

l∑
i=1

pib̄ij = pj(

l∑
i=1

b̄ji), j = 1, . . . , l. (1)

By Lemma 1 in Sahi and Yao (1989), there is a unique normalized price
vector p satisfying (1) if and only if B̄ is irreducible. Then, we denote by
p(b) a function which associates with each strategy selection b the unique
normalized price vector p satisfying (1), if B̄ is irreducible, and is equal to
0, otherwise.

Given a strategy selection b and a normalized price vector p, consider
the assignment determined as follows:

xj(t,b(t), p) = wj(t)−
l∑

i=1

bji(t) +
l∑

i=1

bij(t)
pi

pj
, if p ∈ ∆ \ ∂∆,

xj(t,b(t), p) = wj(t), otherwise,

j = 1, . . . , l, for each t ∈ T .
Given a strategy selection b and the function p(b), the traders’ final

holdings are determined according to this rule and consequently expressed
by the assignment

x(t) = x(t,b(t), p(b)),

for each t ∈ T .2 It is straightforward to show that this assignment is an
allocation.

We are now able to introduce a notion of Cournot-Nash equilibrium for
this reformulation of the Shapley window model (see Codognato and Ghosal
(2000) and Busetto et al. (2011)).

2In order to save in notation, with some abuse we denote by x both the function x(t)
and the function x(t,b(t), p(b)).

6



Definition 4. A strategy selection b̂ such that
¯̂
B is irreducible is a Cournot-

Nash equilibrium of Γ if

ut(x(t, b̂(t), p(b̂))) ≥ ut(x(t, b(t), p(b̂ \ b(t)))),

for each b(t) ∈ B(t) and for each t ∈ T .3

A Cournot-Nash allocation of Γ is an allocation x̂ such that x̂(t) =
x(t, b̂(t), p(b̂)), for each t ∈ T , where b̂ is a Cournot-Nash equilibrium of Γ.

3 Price convergence theorem

By means of Lemma 9 in Sahi and Yao (1989), Busetto et al. (2011) showed
that any convergent sequence of normalized prices corresponding to a se-
quence of Cournot-Nash equilibria has a convergent subsequence whose limit
is a strictly positive normalized price vector. Lemma 9 in Sahi and Yao
(1989), and consequently the convergence result in Busetto et al. (2011),
are essentially based on the assumption that there are at least two atoms
with strictly positive endowments, continuously differentiable utility func-
tions, and indifference curves contained in the strict interior of the com-
modity space. This restriction is stated by Busetto et al. (2011) in their
Assumption 4.

Busetto et al. (2017) also used Lemma 9 in Sahi and Yao (1989) to prove
their limit theorem under the same assumption.

Busetto et al. (2018) provided a different price convergence theorem,
obtained by removing Assumption 4 in Busetto et al. (2011) and focusing
on restrictions concerning endowments and preferences of the atomless part
of the economy rather than of atoms. More precisely, they exploited the
property of small traders, proved by Codognato and Ghosal (2000), of being
“Walrasian” at a Cournot-Nash equilibrium. Their price convergence the-
orem establishes that any sequence of normalized prices corresponding to
a sequence of Cournot-Nash equilibria has a convergent subsequence whose
limit is a strictly positive normalized price vector. They used it to show their
main existence theorem. Here, we use it to prove our new limit theorem for
mixed exchange economies where Assumption 4 in Busetto et al. (2011) is
relaxed.

3Let us notice that, as this definition of a Cournot-Nash equilibrium explicitly refers
to irreducible matrices, it applies only to active equilibria (on this point, see Sahi and Yao
(1989)).
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For the seek of convenience, we repropose the formal statement of the
price convergence theorem shown by Busetto et al. (2018).

Theorem 1. Under Assumptions 1, 2, and 3, let {p̂n} be a sequence of
normalized prices such that {p̂n} = p(b̂n) where b̂n is a Cournot-Nash
equilibrium of Γ, for each n = 1, 2, . . .. Then, there exists a subsequence
{p̂kn} of the sequence {p̂n} which converges to a price vector p̂ ∈ ∆ \ ∂∆.

Proof. See the proof of Theorem 1 in Busetto et al. (2018).

4 Replication à la Cournot of E
In this section, we focus on the concept of replication introduced by Busetto
et al. (2017), in the original spirit of Cournot (1838). We will use this
concept to obtain our limit theorem for the Cournot-Nash equilibria of the
mixed version of the Shapley window model. By analogy with the replica-
tion proposed by Cournot in a partial equilibrium framework, the concept
proposed by Busetto et al. (2017) is obtained by replicating only the atoms
of E , while making them asymptotically negligible, and without affecting
the atomless part.

This replication à la Cournot of E can be formalized as follows. Let En

be an exchange economy characterized as in Section 2, where each atom is
replicated n times. For each t ∈ T1, let tr denote the r-th element of the n-
fold replication of t. We assume that, for each t ∈ T1, w(tr) = w(ts) = w(t),

utr(·) = uts(·) = ut(·), r, s = 1, . . . , n, and µ(tr) = µ(t)
n , r = 1, . . . , n.

Clearly, E1coincides with E .
Then, the strategic market game Γn associated with En can be character-

ized, mutatis mutandis, as in Section 2. Clearly, Γ1 coincides with Γ. A strat-
egy selection b of Γn is said to be atom-type-symmetric if bn(tr) = bn(ts),
r, s = 1, . . . , n, for each t ∈ T1.

We provide now the definition of an atom-type-symmetric Cournot-Nash
equilibrium of Γn.

Definition 5. A strategy selection b̂ such that
¯̂
B is irreducible is an atom-

type-symmetric Cournot-Nash equilibrium of Γn if b̂ is atom-type-symmetric
and if

utr(x(tr, b̂(tr), p(b̂))) ≥ utr(x(tr, b(tr), p(b̂ \ b(tr)))),

for each b(tr) ∈ B(tr), r = 1, . . . , n, and for each t ∈ T1;

ut(x(t, b̂(t), p(b̂))) ≥ ut(x(t, b(t), p(b̂ \ b(t)))),
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for each b(t) ∈ B(t) and for each t ∈ T0.

In order to show the existence of an atom type-symmetric Cournot-Nash
equilibrium of Γn, we need to define the notion of a perturbation of this
strategic market game, denoted by Γn(ϵ) (it was already used by Sahi and
Yao (1989), Busetto et al. (2011), and Busetto et al. (2018)).

Given ϵ > 0 and a strategy selection b, we define the aggregate matrix
B̄ϵ to be the matrix such that b̄ϵij = (b̄ij + ϵ), i, j = 1, . . . , l. Clearly, the
matrix B̄ϵ is irreducible. The interpretation is that an outside agency places
fixed bids of ϵ for each pair of commodities (i, j).

Given ϵ > 0, we denote by pϵ(b) the function which associates, with each
strategy selection b, the unique normalized price vector which satisfies

l∑
i=1

pi(b̄ij + ϵ) = pj(
l∑

i=1

b̄ji + ϵ)), j = 1, . . . , l.

Then, let us introduce the following notion of equilibrium for Γn(ϵ).

Definition 6. Given ϵ > 0, a strategy selection b̂ϵ is an atom-type-symmetric
ϵ-Cournot-Nash equilibrium of Γn(ϵ) if b̂ϵ is atom-type-symmetric and

utr(x(tr, b̂
ϵ(tr), pϵ(b̂ϵ))) ≥ utr(tr, b(tr), p

ϵ(b̂ϵ \ b(tr)))),

for each b(tr) ∈ B(tr), r = 1, . . . , n, and for each t ∈ T1;

ut(x(t, b̂
ϵ(t), pϵ(b̂ϵ))) ≥ ut(t, b(t), p

ϵ(b̂ϵ \ b(t)))),

for each b(t) ∈ B(t) and for each t ∈ T0.

5 Existence of an atom-type-symmetric Cournot-
Nash equilibrium of Γn

The theorem presented in this section establishes the existence of an atom-
type-symmetric Cournot-Nash equilibrium of Γn. The proof of the theorem
differs from that provided by Busetto et al. (2017) in that it replaces their
Assumption 4 on endowments and preferences of atoms (the same as As-
sumption 4 in Busetto et al. (2011)) with the assumption that the set of
commodities is strongly connected through traders’ characteristics, which
imposes restrictions on endowments and preferences of the atomless part.
Our existence theorem is based on that proved by Busetto et al. (2018),
which rests crucially on the price converges theorem presented in Section 3.

9



Theorem 2. Under Assumptions 1, 2, 3, and 4, there exists an atom-type-
symmetric Cournot-Nash equilibrium b̂ of Γn.

Proof. We first need to prove the existence of an atom-type-symmetric
ϵ-Cournot-Nash equilibrium of Γn(ϵ). To do so, we apply, as in Busetto et
al. (2011), the Kakutani-Fan-Glicksberg theorem.

We neglect, as usual, the distinction between integrable functions and
equivalence classes of such functions and denote by L1(µ,R

l2) the set of
integrable functions taking values in Rl2 , by L1(µ,B(·)) the set of strategy
selections, and by L1(µ,B

∗(·)) the set of atom-type-symmetric strategy se-
lections. Note that the locally convex Hausdorff space we shall be working
in is L1(µ,R

l2), endowed with its weak topology.
The proof of existence of an atom-type-symmetric ϵ-Cournot-Nash equi-

librium of Γn(ϵ) is articulated in three lemmas.
The first lemma establishes the properties of L1(µ,B

∗(·)) required to
apply the Kakutani-Fan-Glicksberg theorem.

Lemma 1. Under Assumptions 1, 2, 3, and 4, the set L1(µ,B
∗(·)) is

nonempty, convex and weakly compact.

Proof. See the proof of Lemma 1 in Busetto et al. (2017).

Given ϵ > 0, let αϵ
tr : L1(µ,B

∗(·)) → B(tr) be a correspondence such
that αϵ

tr(b) = argmax{utr(x(t, b(tr), pϵ(b \ b(tr)))) : b(tr) ∈ B(tr)}, r =
1, . . . , n, for each t ∈ T1 and for each b ∈ L1(µ,B

∗(·)), and let αϵ
t :

L1(µ,B(·)) → B(t) be a correspondence such that αϵ
t(b) = argmax{ut(x(t,

b(t), pϵ(b\b(t)))) : b(t) ∈ B(t)}, for each t ∈ T0 and for each b ∈ L1(µ,B
∗(·)).

Moreover, let αϵ : L1(µ,B
∗(·)) → L1(µ,B(·)) be a correspondence such

that αϵ(b) = {b ∈ L1(µ,B(·)) : b(tr) ∈ αϵ
tr(b), r = 1, . . . , n, for each t ∈

T1, and b(t) ∈ αϵ
t(b), for each t ∈ T0}, for each b ∈ L1(µ,B

∗(·)). Fi-
nally, let αϵ∗ : L1(µ,B

∗(·)) → L1(µ,B
∗(·)) be a correspondence such that

αϵ∗(b) = αϵ(b) ∩ L1(µ,B
∗(·)), for each b ∈ L1(µ,B

∗(·)).
The second lemma provides us with the properties of the correspondence

αϵ∗.

Lemma 2. Under Assumptions 1, 2, 3, and 4, given ϵ > 0, the correspon-
dence αϵ∗ is nonempty, convex-valued, and it has a weakly closed graph.

Proof. Let ϵ > 0 be given. We have that αϵ
tr(b) is nonempty, r = 1, . . . , n,

for each t ∈ T1 and for each b ∈ L1(µ,B
∗(·)), by the argument used in

the proof of Lemma 2 in Busetto et al. (2011). Moreover, we have that
αϵ
tr(b) = αϵ

ts(b) as utr(·) = uts(·) and B(tr) = B(ts), r, s = 1, . . . , n, for
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each t ∈ T1 and for each b ∈ L1(µ,B
∗(·)). Then, there exists a strat-

egy b̃(t) ∈ B(t) such that b̃(t) ∈ αϵ
tr(b), r = 1, . . . , n, for each t ∈ T1

and for each b ∈ L1(µ,B
∗(·)). But then, αϵ∗(b) is nonempty, for each

b ∈ L1(µ,B
∗(·)), by the same argument used in the proof of Lemma 2 in

Busetto et al. (2011). αϵ∗(b) is convex as αϵ(b) is convex, by Lemma 2
in Busetto et al. (2011), and L1(µ,B

∗(·)) is convex, by Lemma 1, for each
b ∈ L1(µ,B

∗(·)). αϵ has a weakly closed graph, by Lemma 2 in Busetto et
al. (2011). Let ϕ : L1(µ,B

∗(·)) → L1(µ,B
∗(·)) be a correspondence such

that ϕ(b) = L1(µ,B
∗(·)), for each b ∈ L1(µ,B

∗(·)). It is straightforward
to verify that ϕ has a weakly closed graph. Then, αϵ∗ has a weakly closed
graph as it is the intersection of the weakly closed correspondences αϵ and
ϕ, by Theorem 17.25 in Aliprantis and Border (2006).

Finally, the third lemma proves the existence of an atom-type-symmetric
ϵ-Cournot-Nash equilibrium of Γn(ϵ).

Lemma 3. Under Assumptions 1, 2, 3, and 4, given ϵ > 0, there exists an
atom-type-symmetric ϵ-Cournot-Nash equilibrium b̂ϵ of Γn(ϵ).

Proof. Let ϵ > 0 be given. The set L1(µ,B
∗(·)) is nonempty, convex

and weakly compact, by Lemma 1. Moreover, the correspondence αϵ∗ is
nonempty, convex-valued, and it has a weakly closed graph, by Lemma
2. Then, there exists a fixed point b̂ϵ of the correspondence αϵ∗ by the
Kakutani-Fan-Glicksberg Theorem (see Theorem 17.55 in Aliprantis and
Border (2006)). Hence, b̂ϵ is an atom-type-symmetric ϵ-Cournot-Nash equi-
librium of Γn(ϵ).

To complete the proof of Theorem 2, we have to show that there exists
the limit of a sequence of atom-type-symmetric ϵ-Cournot-Nash equilibria
of Γn(ϵ) and that this limit is an atom-type-symmetric Cournot-Nash equi-
librium of Γn. Following Busetto et al. (2011), in this part of the proof we
essentially refer to a generalization of the Fatou’s lemma in several dimen-
sions provided by Artstein (1979). Let ϵm = 1

m , m = 1, 2, . . .. By Lemma
3, for each m = 1, 2, . . ., there is an atom-type-symmetric ϵ-Cournot-Nash

equilibrium b̂ϵm of Γn(ϵ). The facts that the sequence { ¯̂B
ϵm

} belongs to the
compact set {(bij) ∈ Rl2

+ : bij ≤ n
∫
T1

wi(t) dµ+
∫
T0

wi(t) dµ i, j = 1, . . . , l},
the sequence {b̂ϵm(tr)} belongs to the compact set B(tr), r = 1, . . . , n,
for each t ∈ T1, and the sequence {p̂ϵm}, where p̂ϵm = pϵm(b̂ϵm), for each
m = 1, 2, . . ., belongs to the unit simplex ∆, imply that there is a subse-

quence { ¯̂B
ϵkm} of the sequence { ¯̂B

ϵm
} which converges to an element of the

11



set {(bij) ∈ Rl2
+ : bij ≤ n

∫
T1

wi(t) dµ+
∫
T0

wi(t) dµ, i, j = 1, . . . , l}, a subse-

quence {b̂ϵkm (tr)} of the sequence {b̂ϵm(tr)} which converges to an element
of the set B(tr), r = 1, . . . , n, for each t ∈ T1, and a subsequence {p̂ϵkm}
of the sequence {p̂ϵm} which converges to a price vector p̂ ∈ ∆ \ ∂∆, by
Theorem 1. Since the sequence {b̂ϵkm} satisfies the assumptions of Theo-
rem A in Artstein (1979), there is a function b̂ such that b̂(tr) is the limit
of the sequence {b̂ϵkm (tr)}, r = 1, . . . , n, for each t ∈ T1, b̂(t) is a limit
point of the sequence {b̂ϵkm (t)}, for each t ∈ T0, and such that the sequence

{ ¯̂B
ϵkm} converges to

¯̂
B. Then, b̂(tr) = b̂(ts) as {b̂ϵkm (tr)} = {b̂ϵkm (ts)},

r, s = 1, . . . , n, for each t ∈ T1, and b̂(tr) is the limit of the sequence
{b̂ϵkm (tr)}, r = 1, . . . , n, for each t ∈ T1. Hence, it can be proved, by the
same argument used by Busetto et al. (2018) to show their existence the-
orem, that b̂ is an atom-type-symmetric Cournot-Nash equilibrium of Γn.

6 Limit theorem

In this section, we state and prove our limit theorem. It establishes that,
given a sequence of atom-type-symmetric Cournot-Nash allocations of Γn,
for n = 1, 2, . . ., there exists a Walras allocation of E with the following
property: for each trader t ∈ T , the value of this Walras allocation at t is a
limit point of the sequence of final holdings of t associated with the sequence
of atom-type-symmetric Cournot-Nash equilibria of Γn, for n = 1, 2, . . ..

Theorem 3. Under Assumptions 1, 2, 3, and 4, let {b̂n} be a sequence
of strategy selections of Γ and let {p̂n} be a sequence of prices such that
b̂n(t) = b̂Γn

(tr), r = 1, . . . , n, for each t ∈ T1, b̂
n(t) = b̂Γn

(t), for each
t ∈ T0, and p̂n = p(b̂Γn

), where b̂Γn
is an atom-type-symmetric Cournot-

Nash equilibrium of Γn, for n = 1, 2, . . .. Then,
(i) there exists a subsequence {b̂kn} of the sequence {b̂n}, a subsequence
{p̂kn} of the sequence {p̂n}, a strategy selection b̂ of Γ, and a price vector
p̂ ∈ ∆ \ ∂∆, such that b̂(t) is the limit of the sequence {b̂kn(t)}, for each
t ∈ T1, b̂(t) is a limit point of the sequence {b̂kn(t)}, for each t ∈ T0, the

sequence { ¯̂B
kn
} converges to

¯̂
B, and the sequence {p̂kn} converges to p̂;

(ii) x̂(t) is the limit of the sequence {x̂kn(t)}, for each t ∈ T1, and x̂(t)
is a limit point of the sequence {x̂kn(t)}, for each t ∈ T0, where x̂(t) =
x(t, b̂(t), p̂) for each t ∈ T , and x̂kn(t) = x(t, b̂kn(t), p̂kn), for each t ∈ T ,
and for n = 1, 2, . . .;

12



(iii) the pair (p̂, x̂) is a Walras equilibrium of E .

Proof. (i) Let {b̂n} be a sequence of strategy selections of Γ and let
{p̂n} be a sequence of prices such that b̂n(t) = b̂Γn

(tr), r = 1, . . . , n,
for each t ∈ T1, b̂n(t) = b̂Γn

(t), for each t ∈ T0, and p̂n = p(b̂Γn
),

where b̂Γn
is an atom-type-symmetric Cournot-Nash equilibrium of Γn,

for n = 1, 2, . . .. The facts that the sequence { ¯̂B
n
} belongs to the com-

pact set {(bij) ∈ Rl2
+ : bij ≤

∫
T wi(t) dµ, i, j = 1, . . . , l}, the sequence

{b̂n(t)} belongs to the compact set B(t), for each t ∈ T1, and the se-
quence {p̂n}, belongs to the unit simplex ∆, imply that there is a subse-

quence { ¯̂B
kn
} of the sequence { ¯̂B

n
} which converges to an element of the

set {(bij) ∈ Rl2
+ : bij ≤

∫
T wi(t) dµ, i, j = 1, . . . , l}, a subsequence {b̂kn(t)}

of the sequence {b̂n(t)} which converges to an element of the set B(t), for
each t ∈ T1, and a subsequence {p̂kn} of the sequence {p̂n} which converges
to a price vector p̂ ∈ ∆ \ ∂∆, by Theorem 1. Since the sequence {b̂kn} sat-
isfies the assumptions of Theorem A in Artstein (1979), there is a function
b̂ such that b̂(t) is the limit of the sequence {b̂kn(t)}, for each t ∈ T1, b̂(t)
is a limit point of the sequence {b̂kn(t)}, for each t ∈ T0, and such that the

sequence { ¯̂B
kn
} converges to

¯̂
B.

(ii) Let x̂(t) = x(t, b̂(t), p̂) for each t ∈ T , and x̂kn(t) = x(t, b̂kn(t), p̂kn), for
each t ∈ T , and for n = 1, 2, . . .. Then, x̂(t) is the limit of the sequence
{x̂kn(t)}, for each t ∈ T1, as b̂(t) is the limit of the sequence {b̂kn(t)}, for
each t ∈ T1, and the sequence {p̂kn} converges to p̂, x̂(t) is a limit point
of the sequence {x̂kn(t)}, for each t ∈ T0, as b̂(t) is a limit point of the
sequence {b̂kn(t)}, for each t ∈ T0, and the sequence {p̂kn} converges to p̂.

(iii)
¯̂
B

Γn

=
¯̂
B

n
as

¯̂
b
Γn

ij =
∑

t∈T1

∑n
r=1 b̂

Γn

ij (tr)µ(tr) +
∫
t∈T0

b̂Γn

ij (t) dµ =∑
t∈T1

nb̂n
ij(t)

µ(t)
n +

∫
t∈T0

b̂n
ij(t) dµ =

∑
t∈T1

b̂n
ij(t)µ(t)+

∫
t∈T0

b̂n
ij(t) dµ =

¯̂
b
n

ij ,

i, j = 1, . . . , l, for n = 1, 2, . . .. Then, p̂n = p(b̂n) as p̂n and b̂n satisfy (1),
for n = 1, 2, . . .. But then, by continuity, p̂ and b̂ must satisfy (1). We
now show that, if two commodities i, j ∈ L stand in the relation C, then
¯̂
bij > 0. Suppose that

¯̂
bij = 0. Then,

∫
T i b̂ij(t) dµ = 0 as µ(T i) > 0.

Consider a trader τ ∈ T i. We can suppose that b̂ij(τ) = 0 as we ignore

null sets. Since b̂(τ) is a limit point of the sequence {b̂kn(τ)}, there is a
subsequence {b̂hkn (τ)} of this sequence which converges to b̂(τ). Then, the
subsequence {x̂hkn (τ)} of the sequence {x̂kn(τ)} converges to x̂(τ) as the
sequence {b̂hkn (τ)} converges to b̂(τ) and the sequence {p̂hkn} converges to
p̂. But then, we have that x̂j(τ) = 0 as b̂ij(τ) = 0 and x̂(τ) ∈ X0(τ, p̂)
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as x̂hkn (τ) ∈ X0(τ, p̂hkn ), for each n = 1, 2, . . ., by the same argument
used by Codognato and Ghosal (2000) to prove their Theorem 2, and the
correspondence X0(τ, ·) is upper hemicontinuous. Therefore, we have that
∂uτ (x̂(τ))

∂xj = +∞ as i, j ∈ L stand in the relation C and ∂uτ (x̂(τ))
∂xj ≤ νp̂j ,

by the necessary conditions of the Kuhn-Tucker Theorem. Moreover, there
must be a commodity h such that x̂h(τ) > 0 as uτ (·) is strongly monotone,

by Assumption 2, and p̂w(τ) > 0. Then, ∂uτ (x̂(τ))
∂xh = νp̂h, by the neces-

sary conditions of the Kuhn-Tucker Theorem. But then, ∂uτ (x̂(τ))
∂xh = +∞

as ν = +∞, contradicting the assumption that uτ (·) is continuously differ-
entiable. Therefore, if two commodities i, j ∈ L stand in the relation C,

then
¯̂
bij > 0. This implies that the matrix

¯̂
B is irreducible by our Assump-

tion 4 and by the argument used by Codognato and Ghosal (2000) in the
proof of their Theorem 2. Consider the pair (p̂, x̂). It is straightforward to
show that the assignment x̂ is an allocation as p̂ and b̂ satisfy (1) and that
x̂(t) ∈ {x ∈ Rl

+ : p̂x = p̂w(t)}, for each t ∈ T . Suppose that (p̂, x̂) is not a
Walras equilibrium of E . Then, there exists a trader τ ∈ T and a commodity
bundle x̃ ∈ {x ∈ Rl

+ : p̂x = p̂w(τ)} such that uτ (x̃) > uτ (x̂(τ)). By Lemma

5 in Codognato and Ghosal (2000), there exist real numbers λ̃j ≥ 0, with∑l
j=1 λ̃

j = 1, such that

x̃j = λ̃j

∑l
i=1 p̂

iwi(τ)

p̂j
, j = 1, . . . , l.

Let b̃ij = wi(τ)λ̃j , i, j = 1, . . . , l. Then, it is straightforward to verify that

x̃j = wj(τ)−
l∑

i=1

b̃ji +

l∑
i=1

b̃ij
p̂i

p̂j
,

for each j = 1, . . . , l. Consider the following cases.
Case 1. τ ∈ T1. Let ρ denote the k1-th element of the kn-fold replica-

tion of E and let
¯̂
B

Γkn

\ b̃(τρ) be the aggregate matrix corresponding to

the strategy selection b̂Γkn \ b̃(τρ), where b̃(τρ) = b̃, for n = 1, 2, . . .. Let

∆
¯̂
B

Γkn

\ b̃(τρ) and ∆
¯̂
B

kn
denote the diagonal matrices of row sums of,

respectively,
¯̂
B

Γkn

\ b̃(τρ) and
¯̂
B

kn
, for n = 1, 2, . . .. Moreover, let qΓ

kn

τρ ,

and qkn denote the vectors of the cofactors of the first column of, respec-

tively, ∆
¯̂
B

Γkn

\ b̃(τρ) − ¯̂
B

Γkn

\ b̃(τρ) and ∆
¯̂
B

kn
− ¯̂

B
kn
, for n = 1, 2, . . ..

Clearly, qΓ
kn

= qkn as
¯̂
B

Γkn

=
¯̂
B

kn
, for n = 1, 2, . . .. Let ∆

¯̂
B be the
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diagonal matrix of row sums of
¯̂
B and q be the cofactors of the first col-

umn of ∆
¯̂
B − ¯̂

B. The sequence {qkn} converges to q as the sequence
¯̂
B

kn

converges to
¯̂
B. Let w̄ = max{w1(τ), . . . ,wl(τ)}. Consider the matrix

¯̂
B

Γkn

− ¯̂
B

Γkn

\ b̃(τρ), for n = 1, 2, . . .. Then, we have that
¯̂
b
Γkn

ij − ¯̂
b
Γkn

ij \
b̃ij(τρ) = ( 1

kn
b̂Γkn

ij (τρ) − 1
kn
b̃ij(τρ)), i, j = 1, . . . , l, for n = 1, 2, . . .. But

then, the sequence of Euclidean distances {∥ ¯̂B
Γkn

− ¯̂
B

Γkn

\ b̃(τρ)∥} con-

verges to 0 as | 1
kn
b̂Γkn

ij (τρ) − 1
kn
b̃ij(τρ)|= 1

kn
|b̂Γkn

ij (τρ) − b̃ij(τρ)| ≤ 1
kn
w̄,

i, j = 1, . . . , l, n = 1, 2, . . .. The sequence { ¯̂B
Γkn

\ b̃(τρ)} converges to

¯̂
B as, by the triangle inequality, ∥ ¯̂B

Γkn

\ b̃(τρ)} − ¯̂
B∥ ≤ ∥ ¯̂B

Γkn

− ¯̂
B

Γkn

\

b̃(τρ)∥ + ∥ ¯̂B
Γkn

− ¯̂
B∥ = ∥ ¯̂B

Γkn

− ¯̂
B

Γkn

\ b̃(τρ)∥ + ∥ ¯̂B
kn

− ¯̂
B∥, for n =

1, 2, . . ., and the sequences {∥ ¯̂B
Γkn

− ¯̂
B

Γkn

\ b̃(τρ)∥} and {∥ ¯̂B
kn

− ¯̂
B∥}

converge to 0. Then, the sequence {qΓkn

τρ } converges to q. We have that

uτρ(x(τρ, b̂
Γkn

(τρ), p(b̂Γkn
))) ≥ uτρ(x(τρ, b̃(τρ), p(b̂

Γkn \ b̃(τρ)))) as b̂Γkn
is

an atom-type-symmetric Cournot-Nash equilibrium of Γkn , for n = 1, 2, . . ..
Then, we have that uτ (x(τ, b̂

kn(τ), pkn)) ≥ uτ (x(τ, b̃(τρ), q
Γkn

τρ )) as uτρ(·) =
uτ (·), b̂Γkn

(τρ) = b̂kn(τ), p(bΓkn
) = p̂kn , p(b̂Γkn \ b̃(τρ)) = βknq

Γkn

τρ , with
βkn > 0, by Lemma 2 in Sahi and Yao, for n = 1, 2, . . .. But then, it must
be that

uτ (x̂(τ)) = uτx(τ, b̂(τ), p̂) ≥ uτ (x(τ, b̃(τρ), q) = uτ (x̃),

as the sequence {b̂kn(τ)} converges to b̂(τ), the sequence {p̂kn} converges

to p̂, the sequence {qΓkn

τρ } converges to q, b̃(τρ) = b̃, p̂ = θq, with θ > 0,
by Lemma 2 in Sahi and Yao, and uτ (·) is continuous, by Assumption 2, a
contradiction.
Case 2. τ ∈ T0. Let {b̂hkn (τ)} be a subsequence of the sequence {b̂kn(τ)}
which converges to b̂(τ). Moreover, let b̂Γhkn \ b̃(τ) be a strategy selec-

tion obtained by replacing b̂hkn (τ) in b̂Γhkn with b̃, for n = 1, 2, . . .. We

have that uτ (x(τ, b̂
Γhkn (τ), p(b̂Γhkn ))) ≥ uτ (x(τ, b̃(τ), p(b̂

Γhkn \ b̃(τ)))) as

b̂Γhkn is an atom-type-symmetric Cournot-Nash equilibrium of Γhkn , for n =
1, 2, . . .. Then, we have that uτ (x(τ, b̂

hkn (τ), p̂hkn )) ≥ uτ (x(τ, b̃(τ), p̂
hkn ))

as b̂Γhkn (τ) = b̂hkn (τ), p(b̂Γhkn ) = p̂hkn , and p(b̂Γhkn \ b̃(τ)) = p(b̂Γhkn ) =
p̂hkn , by Lemma 1 in Codognato and Ghosal (2000). But then, it must be
that

uτ (x̂(τ)) = uτx(τ, b̂(τ), p̂) ≥ uτ (x(τ, b̃(τ), p̂) = uτ (x̃),
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as the sequence {b̂hkn (τ)} converges to b̂(τ), the sequence {phkn} converges
to p̂, b̃(τ) = b̃, and uτ (·) is continuous, by Assumption 2, a contradiction.
Hence, the pair (p̂, x̂) is a Walras equilibrium of E .

7 Discussion of the model

In this section, we go deeper into the relationships of the analysis developed
in this paper with the previous literature in the same line.

Let us consider first the contribution by Busetto et al. (2017). The
fundamental assumptions underlying the results of these authors are As-
sumptions 2, 3, and the following two further assumptions.

Assumption 1′. w(t) > 0, for each t ∈ T .

Assumption 1′ is clearly less restrictive than our Assumption 1

Assumption 4′. There are at least two traders in T1 for whom w(t) ≫ 0,
ut is continuously differentiable in Rl

++, and {x ∈ Rl
+ : ut(x) = ut(w(t))} ⊂

Rl
++

Assumption 4′ was originally introduced by Sahi and Yao (1989) and
reformulated for the mixed version of the Shapley window model by Busetto
et al. (2011).

To prove their results Busetto et al. (2017) also needed to use the follow-
ing notion of a δ-positive strategy selection, which was first used by Sahi and
Yao (1989): let T̄1 ⊂ T1 be a set consisting of two traders in T1 for whom
Assumption 4′ holds; moreover, let δ = mint∈T̄1

{1
l min{w1(t), . . . ,wl(t)}}.

We say that the correspondence Bδ : T → P(Rl2
+) is a δ-positive strategy

correspondence if Bδ(t) = B(t) ∩ {(bij) ∈ Rl2
+ :

∑
i ̸∈J

∑
j∈J(bij + bji) ≥

δ, for each J ⊆ {1, . . . , l}}, for each t ∈ T̄1 and if Bδ(t) = B(t), for the
remaining traders t ∈ T . Moreover, we say that a strategy selection b is
δ-positive if b(t) ∈ Bδ(t), for each t ∈ T . This notion can be straight-
forwardly extended to Γn noticing that Bδ(tr) = Bδ(ts), r, s = 1, . . . , n,
for each t ∈ T1. Then, we say that an atom-type-symmetric Cournot-Nash
equilibrium b̂ of Γn is δ-positive if b̂ is a δ-positive strategy selection.

Under Assumptions 1′, 2, 3, and 4′, Busetto et al. (2017) proved the exis-
tence of a δ-positive atom-type-symmetric Cournot-Nash equilibrium of Γn,
in their Theorem 2, and its convergence to a Walras equilibrium through a
replication à la Cournot, in their Theorem 3. The proofs of these theorems,
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as already said, crucially rest on their price convergence result, establish-
ing that any convergent sequence of normalized prices corresponding to a
sequence of Cournot-Nash equilibria has a convergent subsequence whose
limit is a strictly positive normalized price vector. This result in turn ex-
ploits Lemma 9 in Sahi and Yao (1989), which is itself essentially based on
hypotheses like those stated in Assumption 4′.

Let us consider now the contribution by Busetto et al. (2018). Their
price convergence theorem, presented in Section 3 and used in this paper
to show our Theorems 2 and 3, was employed by those authors to prove, in
their Theorem 3, a kind of hybrid existence result based on Assumptions 1,
2, 3, and the following variant of Assumption 4′.

Assumption 4′′. There are at least two traders in T1 for whom w(t) ≫ 0.

This assumption is less restrictive than Assumption 4′, as it removes
the restriction that the two atoms with strictly positive endowments also
have continuously differentiable utility functions, and indifference curves
contained in the strict interior of the commodity space. We present now
two theorems which extend Theorem 3 in Busetto et al. (2018). Under
Assumptions 1, 2, 3, and 4′′, and using the price convergence result expressed
by Theorem 1, they establish the existence of a δ-positive atom-type-sym-
metric Cournot-Nash equilibrium of Γn and its convergence to a Walras
equilibrium through a replication à la Cournot.

Theorem 4. Under Assumptions 1, 2, 3, and 4′′, there exists a δ-positive
atom-type-symmetric Cournot-Nash equilibrium b̂ of Γn.

Proof. It can be proved by adapting the arguments provided by Theorems
1 and 2, Theorem 2 in Busetto et al. (2017), and Theorem 3 in Busetto et
al. (2018).

Theorem 5. Under Assumptions 1, 2, 3, and 4′′, let {b̂n} be a sequence
of strategy selections of Γ and let {p̂n} be a sequence of prices such that
b̂n(t) = b̂Γn

(tr), r = 1, . . . , n, for each t ∈ T1, b̂
n(t) = b̂Γn

(t), for each
t ∈ T0, and p̂n = p(b̂Γn

), where b̂Γn
is a δ-positive atom-type-symmetric

Cournot-Nash equilibrium of Γn, for n = 1, 2, . . .. Then,
(i) there exists a subsequence {b̂kn} of the sequence {b̂n}, a subsequence
{p̂kn} of the sequence {p̂n}, a strategy selection b̂ of Γ, and a price vector
p̂ ∈ ∆ \ ∂∆, such that b̂(t) is the limit of the sequence {b̂kn(t)}, for each
t ∈ T1, b̂(t) is a limit point of the sequence {b̂kn(t)}, for each t ∈ T0, the

sequence { ¯̂B
kn
} converges to

¯̂
B, and the sequence {p̂kn} converges to p̂;
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(ii) x̂(t) is the limit of the sequence {x̂kn(t)}, for each t ∈ T1, and x̂(t)
is a limit point of the sequence {x̂kn(t)}, for each t ∈ T0, where x̂(t) =
x(t, b̂(t), p̂) for each t ∈ T , and x̂kn(t) = x(t, b̂kn(t), p̂kn), for each t ∈ T ,
and for n = 1, 2, . . .;
(iii) the pair (p̂, x̂) is a Walras equilibrium of E .

Proof. It can be proved by adapting the arguments provided by Theorems
1 and 3, and Theorem 3 in Busetto et al. (2017).

Codognato and Ghosal (2000) reformulated the Shapley window model,
first proposed by Sahi and Yao (1989) for the case of an exchange econ-
omy with a finite set of traders, in the context of an exchange economy
with an atomless continuum of traders. In this framework, they showed
an equivalence result à la Aumann (1964) between the set of the Cournot-
Nash allocations of the Shapley window model and the set of the Walras
allocations of the underlying exchange economy. Since the mixed measure
space we are using in this paper may contain countably infinite atoms, the
question can be raised whether an equivalence result can be obtained also in
this case. We repropose here an example provided by Busetto et al. (2017),
which gives a negative answer to the question.

Example 1. Consider an exchange economy E , satisfying Assumptions 1,
2, 3, and 4, where l = 2, T1 contains countably infinite atoms, there is an
atom τ ∈ T1 such that w1(τ) = 0, w2(τ) > 0, uτ (x) =

∑2
i=1 v

i
τ (x

i), for

each x ∈ R2
+, v

i
τ (x

i) is differentiable, and dviτ (0)
dxi = +∞, i = 1, 2. If b̂ is

a Cournot-Nash equilibrium of Γ, then the Cournot-Nash allocation x̂ such
that x̂(t) = x(t, b̂(t), p(b̂)), for each t ∈ T , is not a Walras allocation of E .

Proof. See the proof of the Example in Busetto et al. (2017).

While Example 1 proves that the condition that E contains a countably
infinite number of atoms is not sufficient to guarantee that any Cournot-
Nash allocation is a Walras allocation, the following example, borrowed
from Codognato et al. (2015), can be used to show that this condition is
not even necessary.

Example 2. Consider an exchange economy E satisfying Assumptions 1,
2, 3, and 4, where l = 2, T1 = {2}, µ(2) = 1, w(2) = (0, 4), u2(x) =√
x1 + 1

30x
2, T0 = [0, 1] is taken with Lebesgue measure, w(t) = (4, 0),

ut(x) =
√
x1 +

√
x2, for each t ∈ [0, 12 ], w(t) = (0, 4), ut(x) =

√
x1 + 1

30x
2,

for each t ∈ [12 , 1]. Then, there is a unique Walras allocation of E which
coincides with the unique Cournot-Nash allocation of Γ.
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Proof. The uniqueWalras equilibrium is the pair (p∗,x∗), where (p∗1, p∗2) =

(
√
21+3
2 , 1), (x∗1(2),x∗2(2)) = ( 8√

21+3
, 0), (x∗1(t),x∗2(t)) = ( 8√

21+5
, 12), for

each t ∈ [0, 12 ], (x
∗1(t),x∗2(t)) = ( 8√

21+3
, 0), for each t ∈ [12 , 1]. The strat-

egy selection b∗, where b∗
21(2) = 4, b∗

12(t) = 4
√
21+12√
21+5

, for each t ∈ [0, 12 ],

b∗
21(t) = 4, for each t ∈ [12 , 1], is the unique Cournot-Nash equilibrium and

x∗(t) = x(t,b∗(t), p(b∗)), for each t ∈ T . Then, the unique Walras alloca-
tion is also the unique Cournot-Nash allocation.

In the framework of mixed exchange economies, Gabszewicz and Mertens
(1971) showed that, if atoms are not “too” big, the core coincides with the
set of Walras allocations whereas Shitovitz (1973), in his Theorem B, proved
that this result also holds if the atoms are of the same type, i.e., they have
the same endowments and preferences.

Okuno et al. (1980) considered a mixed exchange economy with two
commodities which are both held by all traders and they showed that, if
there are two atoms of the same type who, at a Cournot-Nash equilibrium,
demand a positive amount of the two commodities, then the corresponding
Cournot-Nash allocation is not a Walras allocation. They contrasted this
result with the equivalence between the core and the set of Walras allocations
which would hold in this case according to Theorem B in Shitovitz (1973).

Codognato et al. (2015), within the bilateral oligopoly version of the
two-commodity mixed exchange economy analysed by Okuno at al. (1980),
showed a theorem establishing that, under the assumptions that all traders’
utility functions are continuous, strongly monotone, quasi-concave, and mea-
surable, and atoms’ utility functions are also differentiable, a necessary and
sufficient condition for a Cournot-Nash allocation to be a Walras allocation
is that all atoms demand a null amount of one of the two commodities.

Example 2 above satisfies the assumptions used in the main theorem
in Gabszewicz and Mertens (1971), in the main theorem in Codognato et
al. (2015), and in our limit theorem. This raises the question of the rela-
tion between atoms’ Walrasian Cournot-Nash strategies and their Walrasian
limit.

In the following example, we use the same economy considered in Ex-
ample 2 to provide a first insight into this issue.

Example 2′. Consider the exchange economy specified in Example 2. Let
b̂1 and b̂ be strategy selections as in the statement of Theorem 3. Then,
b̂1 = b̂.

Proof. b̂1 is the unique Cournot-Nash allocation of Γ and the allocation
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x̂ such that x̂(t) = x(t, b̂1(t), p(b̂1)), for each t ∈ T , is the unique Walras
allocation of E , by Example 2. We also have that x̂(t) = x(t, b̂(t), p(b̂)), for
each t ∈ T , by Theorem 3. Hence, it must be that b̂1 = b̂.

This example shows that traders may achieve a Walras allocation at the
same Cournot-Nash equilibrium in a finite and an asymptotic economy, i.e.,
by keeping their strategic power even when atoms become asymptotically
negligible.

Finally, we propose a proposition which provides sufficient conditions
under which the result obtained by Okuno et al. (1980) we have mentioned
above also holds in the bilateral oligopoly version of their model: under the
assumptions made both by Busetto et al. (2011) and Busetto et al. (2017),
a δ-positive Cournot-Nash allocation is never a Walras allocation.

Proposition. Consider an exchange economy E , satisfying Assumptions 1′,
2, 3, and 4′, where l = 2. Let b̂ be a δ-positive Cournot-Nash equilibrium
and let p̂ = p(b̂) and x̂(t) = x(t, b̂(t), p(b̂)), for each t ∈ T . Then, the pair
(p̂, x̂) is not a Walras equilibrium.

Proof. Let b̂ be a δ-positive Cournot-Nash equilibrium and let p̂ = p(b̂)
and x̂(t) = x(t, b̂(t), p(b̂)), for each t ∈ T . Suppose that the pair (p̂, x̂) is
a Walras equilibrium. Consider a trader τ ∈ T̄1. It must be that x̂(τ) ≫ 0
as uτ (x̂(τ)) ≥ uτ (w(τ)) and τ ∈ T̄1, by Assumption 4′. Moreover, we have
that b̂ij(τ) > 0 for some i, j with i ̸= j as b̂ is a δ-positive Cournot-Nash

equilibrium. Suppose, without loss of generality, that b̂12(τ) > 0. At a
Cournot-Nash equilibrium, for the atom τ , the marginal rate of substitution
must be equal to the marginal rate at which he can trade off commodity 1 for
commodity 2 (see Okuno et al. (1980)). Moreover, at a Walras equilibrium,
the marginal rate of substitution must be equal to the relative price of
commodity 1 in terms of commodity 2. Combining these two conditions, we
obtain

dx2

dx1
= − p̂1

p̂2

¯̂
b12 − b̂12(τ)µ(τ)

¯̂
b12

= − p̂1

p̂2
.

Then, it must be that b̂12(τ) = 0, a contradiction. Hence, the pair (p̂, x̂) is
not a Walras equilibrium.
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8 Conclusion

The main theorem of this paper – Theorem 3 – is a limit result for the mixed
version of the Shapley window model proposed by Busetto et al. (2018). It
is innovative with respect to previous results in the same line in that it is
crucially based on the Walrasian properties of atomless part’s behavior, and
can be applied to economic structures left uncovered by the limit theorem
proved by Busetto et al. (2017). In our theorem, all traders may indeed have
corner endowments, and indifference curves which touch the boundary of the
consumption set. In particular, it covers the case of bilateral oligopoly with
a competitive fringe for each commodity. We leave for further research the
problem of proving a limit theorem for a bilateral oligopoly configuration
without a competitive fringe, a case which violates Assumption 1 of our
Theorem 3.

In the bilateral mixed exchange framework proposed in the seminal pa-
per by Okuno et al. (1980), Codognato et al. (2015) provided an example
where the unique Cournot-Nash allocation and the unique Walras alloca-
tion of a finite exchange economy satisfying the assumptions of Theorem 3
coincide. In this paper, we have used the same economy as in the example
by Codognato et al. (2015) to show that traders keep their strategic power
even when atoms become asymptotically negligible, this way confirming the
equivalence result also in this case. Moreover, we have proved, through a
proposition, that under the assumptions made by Busetto et al. (2011) and
Busetto et al. (2017) the Cournot-Nash allocations whose existence they
proved are never Walras allocations. We leave for further research an in-
vestigation whether the previous results hold beyond the bilateral exchange
framework.

References

[1] Aliprantis C.D., Border K.C. (2006), Infinite dimensional analysis,
Springer, New York.

[2] Artstein Z. (1979), “A note on Fatou’s lemma in several dimensions,”
Journal of Mathematical Economics 6, 277-282.

[3] Aumann R.J. (1964), “Markets with a continuum of traders,” Econo-
metrica 32, 39-50.

21



[4] Busetto F., Codognato G., Ghosal S. (2011), “Noncooperative oligopoly
in markets with a continuum of traders,” Games and Economic Behavior,
72, 38-45.

[5] Busetto F., Codognato G., Ghosal S. (2017), “Asymptotic equivalence
between Cournot-Nash and Walras equilibria in exchange economies with
atoms and an atomless part,” International Journal of Game Theory 46,
975-990.

[6] Busetto F., Codognato G., Ghosal S., Julien L., Tonin S. (2018), “Nonco-
operative oligopoly in markets with a continuum of traders and a strongly
connected set of commodities,” Games and Economic Behavior 108, 478-
485.

[7] Codognato G., Ghosal S. (2000), “Cournot-Nash equilibria in limit ex-
change economies with complete markets and consistent prices,” Journal
of Mathematical Economics 34, 39-53.

[8] Codognato G., Ghosal S., Tonin S. (2015), “Atomic Cournotian traders
may be Walrasian,” Journal of Economic Theory 159, 1-14.

[9] Cournot A. (1838), Recherches sur les principes mathématiques de la
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