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Abstract

We show the existence of a Cournot-Nash equilibrium for a mixed
version of the Shapley window model, where large traders are repre-
sented as atoms and small traders are represented by an atomless part.
Previous existence theorems for the Shapley window model, provided
by Sahi and Yao (1989) in the case of economies with a finite num-
ber of traders, and by Busetto, Codognato and Ghosal (2011) in the
case of mixed economies, are essentially based on the assumption that
there are at least two atoms with strictly positive endowments and
indifference curves contained in the strict interior of the commodity
space. Our result does not require this restriction. It relies on the
characteristics of the atomless part of the economy and exploits the
fact that traders belonging to the atomless part have an endogenous
”Walrasian” behavior.
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1 Introduction

Busetto, Codognato, and Ghosal (2011) proved the existence of a Cournot-
Nash equilibrium for the Shapley window model in mixed exchange economies
à la Shitovitz, i.e., in exchange economies with large traders, represented as
atoms, and small traders, represented by an atomless part (see Shitovitz
(1973)).1 The Shapley window model belongs to a very fruitful line of re-
search on non-cooperative market games, initiated by Lloyd S. Shapley and
Martin Shubik (for a survey of this literature, see Giraud (2003)). It was
proposed informally by Shapley and subsequently formalized by Sahi and
Yao (1989) in the case of exchange economies with a finite number of traders.
For this case, they proved the existence of a Cournot-Nash equilibrium.

Codognato and Ghosal (2000) studied the Shapley window model in the
case of exchange economies with an atomless continuum of traders and they
proved an equivalence theorem à la Aumann between the set of Cournot-
Nash and Walras allocations (see Aumann (1964)).2 This result, together
with the existence theorem of a Walras equilibrium in markets with a contin-
uum of traders proved in Aumann (1966), implies the existence of a Cournot-
Nash equilibrium also in this limit framework.

The proof provided by Busetto et al. (2011) for the mixed market case
is based on the same assumptions as the proof provided by Sahi and Yao
(1989) for the finite case. In particular, it requires that there are at least
two atoms with strictly positive endowments, continuously differentiable
utility functions, and indifference curves contained in the strict interior of
the commodity space. These restrictions are stated by Busetto et al. (2011)
in their Assumption 4.

Codognato and Julien (2013) replaced this assumption on atoms’ endow-
ments and preferences with a different restriction requiring that the atomless
part holds, in the aggregate, each commodity and that preferences of the
traders belonging to the atomless part are represented by Cobb-Douglas
utility functions. Under these assumptions, they showed the existence of

1Mixed exchange economies were systematically analyzed, in the line opened by Shi-
tovitz (1973), using the core as a solution concept (for a survey of this literature, see
Gabszewicz and Shitovitz (1992)). Nevertheless, the idea of mixing large players and
small players in a game theoretical framework was first introduced by John W. Milnor
and Lloyd S. Shapley in two Rand research memoranda written in the early 1960s, then
merged into a single article by Milnor and Shapley (1978).

2Codognato and Ghosal (2000) actually extended to the Shapley window model some
results connecting Cournot-Nash and Walras allocations in strategic market games with
an atomless continuum of traders previously proved by Dubey and Shapley (1994).
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a Cobb-Douglas-Cournot-Nash equilibrium for the Shapley window model,
i.e., a Cournot-Nash equilibrium where the strategies of the traders belong-
ing to the atomless part depend on the parameters of their Cobb-Douglas
utility functions.

In this paper, we develop Codognato and Julien’s idea in a more gen-
eral context: Our main result consists in an existence proof for the mixed
version of the Shapley window model proposed by Busetto et al. (2011)
which is essentially based on restrictions on endowments and preferences of
the atomless part of the economy rather than of atoms. In particular, we
remove their Assumption 4 and we use the fact, proved by Codognato and
Ghosal (2000), that traders belonging to the atomless part have an endoge-
nous “Walrasian behavior:” Their best reply attains indeed a commodity
bundle which maximizes their utility subject to their budget constraint at
the prevailing market clearing prices, which they are not able to manipulate.

More precisely, we exploit this property of the atomless part’s behav-
ior to show a preliminary price convergence theorem, under the assumption
that each commodity is held, in the aggregate, by the atomless part and that
traders’ preferences are continuous, strongly monotone, quasi-concave, and
measurable. This result establishes that any sequence of prices correspond-
ing to a sequence of Cournot-Nash equilibria has a subsequence which con-
verges to a strictly positive price vector and it has an autonomous relevance
since it can be employed to show existence theorems for mixed exchange
economies under different sets of assumptions, as we will argue in the last
section of this article.

Here, we use it to prove our main existence theorem under the assump-
tion that the set of commodities is a net, which imposes a joint restriction
on the endowments and preferences of the atomless part and is a variant of
a hypothesis proposed by Codognato and Ghosal (2000). This assumption,
combined with the continuity properties of the Walrasian correspondence
generated by the atomless part’s behavior, guarantees that the aggregate
matrix of the bids obtained as the limit of a sequence of perturbed Cournot-
Nash equilibria is irreducible.

Finally, we show that our price convergence theorem can be used to prove
a further existence result, which differs both from our main theorem and the
one proposed by Busetto et al. (2011). Like this latter theorem, it requires
that all commodities are held by at least two atoms and, in the aggregate,
by the atomless part but, in contrast with it, it does not require any further
condition on traders’ preferences beyond continuity, strong monotonicity,
quasi-concavity, and measurability.
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The paper is organized as follows. In Section 2, we introduce the math-
ematical model. In Section 3, we state and prove the general price conver-
gence theorem. In Section 4, we state and prove our main existence theorem.
In Section 5, we discuss the model and we provide a further existence theo-
rem. In Section 6, we draw some conclusions from our analysis.

2 The mathematical model

We consider a pure exchange economy with large traders, represented as
atoms, and small traders, represented by an atomless part. The space of
traders is denoted by the measure space (T, T , µ), where T is the set of
traders, T is the σ-algebra of all µ-measurable subsets of T , and µ is a real
valued, non-negative, countably additive measure defined on T . We assume
that (T, T , µ) is finite, i.e., µ(T ) < +∞. This implies that the measure space
(T, T , µ) contains at most countably many atoms. Let T1 denote the set of
atoms and T0 = T \ T1 the atomless part of T . A null set of traders is a set
of measure 0. Null sets of traders are systematically ignored throughout the
paper. Thus, a statement asserted for “each” trader in a certain set is to
be understood to hold for all such traders except possibly for a null set of
traders. The word “integrable” is to be understood in the sense of Lebesgue.

In the exchange economy, there are l different commodities. A com-
modity bundle is a point in Rl

+. An assignment (of commodity bundles
to traders) is an integrable function x: T → Rl

+. There is a fixed initial
assignment w, satisfying the following assumption.

Assumption 1. w(t) > 0, for each t ∈ T ,
∫
T0

w(t) dµ ≫ 0.

An allocation is an assignment x for which
∫
T x(t) dµ =

∫
T w(t) dµ.

The preferences of each trader t ∈ T are described by a utility function
ut : R

l
+ → R, satisfying the following assumptions.

Assumption 2. ut : R
l
+ → R is continuous, strongly monotone, and quasi-

concave, for each t ∈ T .

Let B denote the Borel σ-algebra of Rl
+. Moreover, let T

⊗
B denote

the σ-algebra generated by all the sets E × F such that E ∈ T and F ∈ B.

Assumption 3. u : T × Rl
+ → R, given by u(t, x) = ut(x), for each t ∈ T

and for each x ∈ Rl
+, is T

⊗
B-measurable.

In order to state our last assumption, which imposes that the set of
commodities is a net and is a reformulation of a hypothesis introduced by
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Codognato and Ghosal (2000), we need some preliminary definitions: We
denote by L the set of commodities {1, . . . , l}. We say that two commodities
i, j ∈ L stand in relation C if there is a measurable set Ti, with µ(Ti) > 0,
such that Ti = {t ∈ T0 : wi(t) > 0, wr(t) = 0, for each r ∈ L \ {i}},
ut(·) is differentiable, additively separable in commodity j, i.e., ut(x) =

vjt (x
j) + vt(x

1, . . . , xj−1, xj+1, . . . , xl), for each x ∈ Rl
+, and

dvjt (0)
dxj = +∞,

for each t ∈ Ti.
3 Moreover, we repropose the original definition provided by

Codognato and Ghosal (2000), to whom we refer for further details.

Definition 1. The set of commodities L is said to be a net if {(i, j) :
iCj} ≠ ∅ and any pair of distinct vertices, i and j, of the directed graph
DL(L,C) are connected by a path.

We can now introduce our last assumption.

Assumption 4. The set of commodities L is a net.

A price vector is a nonnull vector p ∈ Rl
+. Let X

0 : T0 ×Rl
++ → P(Rl)

be a correspondence such that, for each t ∈ T0 and for each p ∈ Rl
++,

X0(t, p) = argmax{u(x) : x ∈ Rl
+ and px ≤ pw(t)}. It is well-known that

the previous assumptions guarantee that the correspondence X0(t, ·) is up-
per hemicontinuous, for each t ∈ T0. For each p ∈ Rl

++, let
∫
T0

X0(t, p) dµ =

{
∫
T0

x0(t, p) dµ : x0(·, p) is integrable and x0(t, p) ∈ X0(t, p), for each t ∈
T0}. Finally, let Z0 : Rl

++ → P(Rl) be a correspondence which associates
with each p ∈ Rl

++ the Minkowski difference between the set
∫
T0

X0(t, p) dµ

and the set {
∫
T0

w(t) dµ}.4
We define now the strategic market game associated with the exchange

economy described above. It is a slightly reformulated version of the Shapley
window model for mixed economies proposed by Busetto et al. (2011).

A strategy correspondence is a correspondence B : T → P(Rl2
+) such

that, for each t ∈ T , B(t) = {(bij) ∈ Rl2
+ :

∑l
j=1 bij ≤ wi(t), i = 1, . . . , l},

where bij , i, j = 1, . . . , l, represents the amount of commodity i that trader t
offers in exchange for commodity j. Moreover, with some abuse of notation,
we denote by b(t) ∈ B(t) a strategy of trader t. A strategy selection is an

3In this definition, differentiability is to be understood as continuous differentiability
and it includes the case of infinite partial derivatives along the boundary of the consump-
tion set (for a discussion of this case, see, for instance, Kreps (2012), p. 58). Moreover, it
can proved that the separable utility function used in the definition is the representation
of separable preferences (see, for instance, Kreps (2012), p. 42.)

4For a discussion of the properties of the correspondences introduced above and their
proofs see, for instance, Debreu (1982), Section 4.
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integrable function b : T → Rl2
+, such that, for each t ∈ T , b(t) ∈ B(t).

Given a strategy selection b, we call aggregate matrix the matrix B̄ such
that b̄ij = (

∫
T bij(t) dµ), i, j = 1, . . . , l. Moreover, we denote by b \ b(t) the

strategy selection obtained from b by replacing b(t) with b(t) ∈ B(t) and
by B̄ \ b(t) the corresponding aggregate matrix.

The following definitions are borrowed from Sahi and Yao (1989).

Definition 2. A nonnegative square matrix A is said to be irreducible if, for

every pair (i, j), with i ̸= j, there is a positive integer k such that a
(k)
ij > 0,

where a
(k)
ij denotes the ij-th entry of the k-th power Ak of A.

Definition 3. Given a strategy selection b, a price vector p is said to be
market clearing if

p ∈ Rl
++,

l∑
i=1

pib̄ij = pj(

l∑
i=1

b̄ji), j = 1, . . . , l. (1)

By Lemma 1 in Sahi and Yao (1989), there is a unique, up to a scalar
multiple, price vector p satisfying (1) if and only if B̄ is irreducible. Then,
we denote by p(b) a function which associates with each strategy selection
b the unique, up to a scalar multiple, price vector p satisfying (1), if B̄ is
irreducible, and is equal to 0, otherwise. We can assume that prices are
normalized in such a way that p(b) ∈ ∆, where ∆ = {p ∈ Rl

+ :
∑l

i=1 p
i =

1}, when p(b) ≫ 0.
Given a strategy selection b and a price vector p, consider the assignment

determined as follows:

xj(t,b(t), p) = wj(t)−
l∑

i=1

bji(t) +

l∑
i=1

bij(t)
pi

pj
, if p ∈ Rl

++,

xj(t,b(t), p) = wj(t), otherwise,

j = 1, . . . , l, for each t ∈ T .
Given a strategy selection b and the function p(b), the traders’ final

holdings are determined according to this rule and consequently expressed
by the assignment

x(t) = x(t,b(t), p(b)),

for each t ∈ T .5 It is straightforward to show that this assignment is an
allocation.

5In order to save in notation, with some abuse we denote by x both the function x(t)
and the function x(t,b(t), p(b)).
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We are now able to introduce a notion of Cournot-Nash equilibrium for
this reformulation of the Shapley window model (see Codognato and Ghosal
(2000) and Busetto et al. (2011)).

Definition 4. A strategy selection b̂ such that
¯̂
B is irreducible is a Cournot-

Nash equilibrium if

ut(x(t, b̂(t), p(b̂))) ≥ ut(x(t, b(t), p(b̂ \ b(t)))),

for each b(t) ∈ B(t) and for each t ∈ T .6

Finally, we define the notion of a perturbation of the strategic market
game (it was already used by Sahi and Yao (1989) and Busetto et al. (2011)
in their existence proofs).

Given ϵ > 0, we introduce the aggregate matrix B̄ϵ = (
∫
T bij(t) dµ+ ϵ).

Clearly, B̄ϵ is irreducible. The interpretation is that an outside agency places
fixed bids of ϵ for each pair of commodities (i, j).

Given ϵ > 0, we denote by pϵ(b) the function which associates, with
each strategy selection b, the unique, up to a scalar multiple, price vector
satisfying

l∑
i=1

pi(b̄ij + ϵ) = pj(

l∑
i=1

(b̄ji + ϵ), j = 1, . . . , l.

As already said, prices belong to the unit simplex.

Definition 5. Moreover, given ϵ > 0, a strategy selection b̂ϵ is an ϵ-
Cournot-Nash equilibrium if

ut(x(t, b̂
ϵ(t), pϵ(b̂ϵ))) ≥ ut(x(t, b(t), p

ϵ(b̂ϵ \ b(t)))),

for each b(t) ∈ B(t) and for each t ∈ T .

3 The price convergence theorem

In order to prove their existence theorem, Busetto et al. (2011) used a result,
proved as Lemma 9 in Sahi and Yao (1989), which states that there exists a
constant η > 0 such that pϵj(b̂ϵ) ≥ η, j = 1, . . . , l, for each strategy selection

6Let us notice that, as this definition of a Cournot-Nash equilibrium explicitly refers
to irreducible matrices, it applies only to active equilibria (on this point, see Sahi and Yao
(1989)).
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b̂ϵ with ϵ ≤ 1. By applying this result, Busetto et al. (2011) showed that the
any convergent sequence of normalized prices corresponding to a sequence
of ϵ-Cournot-Nash equilibria has a convergent subsequence whose limit is a
strictly positive price vector. Sahi and Yao’s Lemma 9, and consequently
Busetto et al.’s convergence result, are essentially based on the assumption
that there are at least two atoms with strictly positive endowments, con-
tinuously differentiable utility functions, and indifference curves contained
in the strict interior of the commodity space.7 This restriction is stated by
Busetto et al. (2011) in their Assumption 4.

In this section, we provide a different price convergence theorem, ob-
tained by removing Busetto et al.’s Assumption 4 and focusing on restric-
tions concerning endowments and preferences of the atomless part of the
economy rather than of atoms. More precisely, we exploit the property
of small traders, proved by Codognato and Ghosal (2000), of being “Wal-
rasian” at a Cournot-Nash equilibrium. Our price convergence theorem es-
tablishes that any sequence of normalized prices corresponding to a sequence
of Cournot-Nash equilibria has a convergent subsequence whose limit is a
strictly positive price vector. We use it to show our main existence theorem,
but it can be more generally employed to show other existence theorems for
mixed exchange economies where Busetto et al.’s Assumption 4 is relaxed.
We will give an example in Section 5 by means of the existence result stated
in Theorem 3.

We can now state and prove this general price convergence result.

Theorem 1. Under Assumptions 1, 2, and 3, let {p̂n} be a sequence of
normalized prices such that {p̂n} = p(b̂n) where b̂n is a Cournot-Nash
equilibrium, for each n = 1, 2, . . .. Then, there exists a subsequence {p̂kn}
of the sequence {p̂n} which converges to a price vector p̂ ≫ 0.

Proof. Let {p̂n} be a sequence of normalized prices such that {p̂n} = p(b̂n)
where b̂n is a Cournot-Nash equilibrium, for each n = 1, 2, . . .. Then, there
is a subsequence {p̂kn} of the sequence {p̂n} which converges to a price vector
p̂ ∈ ∆ as the unit simplex ∆ is a compact set. Suppose that p̂ ∈ ∂∆, where
∂∆ denotes the boundary of the unit simplex. Following Debreu (1982), let
|x| =

∑l
i=1 |xi|, for each x ∈ Rl, and let d[0, S] = infx∈S |x|, for each S ⊂ Rl.

Then, the sequence {d[0,Z0(p̂kn)]} diverges to +∞ since
∫
T0

w(t) dµ ≫ 0

7Formally, this assumption requires that there are at least two traders in T1 for whom
w(t) ≫ 0, ut(·) is continuously differentiable in Rl

++, and {x ∈ Rl
+ : ut(x) = ut(w(t))} ⊂

Rl
++.
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and p̂ ∈ ∂∆, as pointed out by Debreu (1982) in Property (iv).8 Let x̂n(t) =
x(t, b̂n(t), p(b̂n)), for each t ∈ T , and for each n = 1, 2, . . .. Then, x̂n(t) ∈
X0(t, pn), for each t ∈ T0, and for each n = 1, 2, . . ., by the same argument
used by Codognato and Ghosal (2000) to prove their Theorem 2.9 But then,
(
∫
T0

x̂n(t) dµ−
∫
T0

w(t) dµ) ∈ Z0(p̂n), for each n = 1, 2, . . .. We have that∫
T0

x̂n(t) dµ ≤
∫
T0

w(t) dµ+

∫
T1

w(t) dµ

as
∫
T x̂n(t) dµ =

∫
T w(t) dµ, for each n = 1, 2, . . .. Then,∣∣∣∣∫

T0

x̂in(t) dµ−
∫
T0

wi(t) dµ

∣∣∣∣ ≤ ∫
T0

wi(t) dµ+

∫
T1

wi(t) dµ

as −
∫
T1

wi(t) dµ ≤
∫
T0

x̂in(t) dµ ≤ 2
∫
T0

wi(t) dµ+
∫
T1

wi(t) dµ, i = 1, . . . , l,
for each n = 1, 2, . . .. But then,

l∑
i=1

∣∣∣∣∫
T0

x̂in(t) dµ−
∫
T0

wi(t) dµ

∣∣∣∣ ≤ l∑
i=1

(∫
T0

wi(t) dµ+

∫
T1

wi(t) dµ

)
,

for each n = 1, 2, . . .. There exists an n0 such that

d[0,Z0(p̂kn)] >

l∑
i=1

(∫
T0

wi(t) dµ+

∫
T1

wi(t) dµ

)
,

for each n ≥ n0, as the sequence {d[0,Z0(p̂kn)]} diverges to +∞. Then,

l∑
i=1

∣∣∣∣∫
T0

x̂ikn(t) dµ−
∫
T0

wi(t) dµ

∣∣∣∣ > l∑
i=1

(∫
T0

wi(t) dµ+

∫
T1

wi(t) dµ

)

as
∑l

i=1 |
∫
T0

x̂ikn(t) dµ −
∫
T0

wi(t) dµ| ≥ d[0,Z0(p̂kn)], for each n ≥ n0, a
contradiction. Hence, p̂ ≫ 0.

4 The existence theorem

In this section, we state and prove our main existence theorem for the mixed
version of the Shapley window model, which differs from that proved by

8See Debreu (1982), p. 728.
9See Codognato and Ghosal (2000), p. 49.
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Busetto et al. (2011) in that it replaces their Assumption 4, on endowments
and preferences of atoms, with the assumption that the set of commodities is
a net, imposing restrictions on endowments and preferences of the atomless
part. Our existence result crucially rests on the price convergence theorem
proved in the previous section.

Theorem 2. Under Assumptions 1, 2, 3, and 4, there exists a Cournot-
Nash equilibrium b̂.

Proof. To show Theorem 2, we first need to prove the existence of an
ϵ-Cournot-Nash equilibrium. The following lemma, which was proved by
Busetto et al. (2011) applying the Kakutani-Fan-Glicksberg theorem, states
that such an equilibrium exists.

Lemma 1. For each ϵ > 0, there exists an ϵ-Cournot-Nash equilibrium b̂ϵ.

Proof. See the proof of Lemma 3 in Busetto et al. (2011).

We now show that the sequence of ϵ-Cournot-Nash equilibria has a limit
and that this limit is a Cournot-Nash equilibrium. Following Busetto et al.
(2011), in this part of the proof, we apply a generalization of the Fatou’s
lemma in several dimensions provided by Artstein (1979). Let ϵn = 1

n , n =

1, 2, . . .. By Lemma 1, there is an ϵ-Cournot-Nash equilibrium b̂ϵn , for each

n = 1, 2, . . .. The fact that the sequence { ¯̂B
ϵn
} belongs to the compact set

{(bij) ∈ Rl2
+ : bij ≤

∫
T wi(t) dµ, i, j = 1, . . . , l} and the sequence {p̂ϵn},

where p̂ϵn = p(b̂ϵn), belongs to the unit simplex ∆, for each n = 1, 2, . . .,

implies that there is a subsequence { ¯̂B
ϵkn} of the sequence { ¯̂B

ϵn
} which

converges to an element of the set {(bij) ∈ Rl2
+ : bij ≤

∫
T wi(t) dµ, i, j =

1, . . . , l} and a subsequence {p̂ϵkn} of the sequence {p̂ϵn} which converges
to a price vector p̂ ∈ ∆, with p̂ ≫ 0, by Theorem 1. Since the sequence
{b̂ϵkn} satisfies the assumptions of Theorem A in Artstein (1979) by this
theorem, there is a function b̂ such that b̂(t) is a limit point of the sequence

{b̂ϵkn (t)}, for each t ∈ T and such that the sequence { ¯̂B
ϵkn} converges to

¯̂
B. We now show that, if two commodities i, j ∈ L stand in the relation C,

then
¯̂
bij > 0. Suppose that

¯̂
bij = 0. Then,

∫
Ti
b̂ij(t) dµ = 0 as µ(Ti) > 0.

Consider a trader τ ∈ Ti. We can suppose that b̂ij(τ) = 0 as we ignore

null sets. Since b̂(τ) is a limit point of the sequence {b̂ϵkn (τ)}, there is
a subsequence {b̂ϵhkn (τ)} of this sequence which converges to b̂(τ). Let
x̂n(τ) = x(τ, b̂n(τ), p(b̂n)), for each n = 1, 2, . . ., and x̂(τ) = x(τ, b̂(τ), p̂).
Then, the subsequence {x̂ϵhkn (τ)} of the sequence {x̂n(τ)} converges to x̂(τ)
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as the function x(τ, ·, ·) is well-defined and continuous, for each b(τ) ∈ B(τ)
and for each p ∈ Rl

++, the sequence {b̂ϵhkn (τ)} converges to b̂(τ), and the
sequence {p̂ϵhkn } converges to p̂, with p̂

ϵhkn ≫ 0, for each n = 1, 2, . . ., and
p̂ ≫ 0. But then, x̂j(τ) = 0 as b̂ij(τ) = 0 and x̂(τ) ∈ X0(τ, p̂) as x̂

ϵhkn (τ) ∈
X0(τ, p

ϵhkn ), for each n = 1, 2, . . ., and the correspondence X0(τ, ·) is upper
hemicontinuous. Therefore, we have that ∂uτ (x̂(τ))

∂xj = +∞ as i, j ∈ L stand in

the relation C and ∂uτ (x̂(τ))
∂xj ≤ λp̂j , by the necessary conditions of the Kuhn-

Tucker Theorem. Moreover, there must be a commodity h such that x̂h(τ) >
0 as uτ (·) is strongly monotone, by Assumption 2, and p̂w(τ) > 0. Then,
∂uτ (x̂(τ))

∂xh = λp̂h, by the necessary conditions of the Kuhn-Tucker Theorem.

But then, ∂uτ (x̂(τ))
∂xh = +∞ as λ = +∞, contradicting the assumption that

uτ (·) is continuously differentiable. Therefore, if two commodities i, j ∈ L

stand in the relation C, then
¯̂
bij > 0. This implies that the matrix

¯̂
B is

irreducible by our Assumption 4 and by the argument, we already mentioned
in the proof of our Theorem 1, used by Codognato and Ghosal (2000) in the

proof of their Theorem 2. Consider a trader τ ∈ T1. The matrix
¯̂
B \ b(τ) is

irreducible as
¯̂
bij \ b(τ) > 0 for any pair of commodities i, j ∈ L which stand

in the relation C, by the previous argument. Consider a trader τ ∈ T0. The

matrix
¯̂
B \ b(τ) is irreducible as

¯̂
B =

¯̂
B \ b(τ). Then, the matrix

¯̂
B \ b(τ)

is irreducible, for each t ∈ T . But then, from the same argument used by
Busetto et al. (2011) in their existence proof (Cases 1 and 3), it follows that
ut(x(t, b̂(t), p(b̂))) ≥ ut(x(t, b(t), p(b̂ \ b(t)))), for each b(t) ∈ B(t) and for
each t ∈ T .10 Hence, b̂ is a Cournot-Nash equilibrium.

The role played by by Assumption 4 in the proof of Theorem 2 can be
further made clear by using the following example, originally provided by
Busetto et al. (2011). It considers a mixed economy where only Assumptions
1, 2, and 3 are satisfied, and shows that in this economy a Cournot-Nash
equilibrium may not exist.

Example. Consider the following exchange economy: l = 2, T = T1 ∪ T0,
where T1 = {2, 3} and T0 = [0, 1], w(2) = (1, 0), w(3) = (0, 1), u2(·) and
u3(·) satisfy our Assumption 2, w(t) = (1, 0), for each t ∈ [0, 12 ], w(t) =
(0, 1), for each t ∈ [12 , 1], ut(·) = kx1+x2, for each t ∈ [0, 12 ], ut(·) = x1+kx2,
for each t ∈ [12 , 1], k > 1. This exchange economy does not admit any
Cournot-Nash equilibrium.

Proof. See Busetto et al. (2011), p. 44.

10See Busetto et al. (2011), p. 43.
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Assumptions 1, 2, and 3 are sufficient to prove Theorem 1, as shown in
Section 2. They are also sufficient to prove the existence of a Walras equi-
librium in atomless exchange economies, as shown by Debreu (1982).11 By
establishing that they are not sufficient to show the existence of a Cournot-
Nash equilibrium for a mixed version of the Shapley window model, the
example above emphasizes the fact that, in the proof of Theorem 2, conti-
nuity properties of the Walrasian correspondence generated by the atomless
part’s behavior must be combined with Assumption 4, the net assumption,
in order to assure that the aggregate matrix of the bids obtained as the limit
of a sequence of perturbed Cournot-Nash equilibria is irreducible.

5 Discussion of the model

Busetto et al. (2011) showed their existence theorem for the mixed version
of Shapley window model under the assumption that there are at least two
atoms with strictly positive endowments, continuously differentiable utility
functions, and indifference curves contained in the strict interior of the com-
modity space. Our Theorem 2 provides a different existence proof, which
replaces this assumption on atoms’ endowments and preferences with other
restrictions, on endowments and preferences of the atomless part, expressed
by the assumption that the set of commodities is a net. The crucial role
played in our proof by this assumption has been stressed through the exam-
ple proposed in the previous section. The other fundamental element in the
proof of this result is represented by Theorem 1, which holds without any
further assumption beyond Assumptions 1, 2, and 3. We prove now that
this price convergence result can be used to show a further existence theorem
for a mixed exchange economy: Like the existence result in Busetto et al
(2011), it imposes that all commodities are held by at least two atoms and,
in the aggregate, by the atomless sector, but differs from that result since
it does not require any further condition on preferences beyond continuity,
strong monotonicity, quasi-concavity, and measurability.

Let us now replace our Assumption 4 with the following.

Assumption 4′. There are at least two traders in T1 for whom w(t) ≫ 0.

This assumption is less restrictive than Assumption 4 in Busetto et al.
(2011) as it removes the restriction that the two atoms with strictly posi-

11Debreu (1982)’s result is a generalization of an existence theorem of a Walras equilib-
rium for exchange economies with a continuum of traders proved by Aumann (1966).
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tive endowments also have continuously differentiable utility functions, and
indifference curves contained in the strict interior of the commodity space.

We now state and prove the new existence theorem.

Theorem 3. Under Assumptions 1, 2, 3, and 4′, there exists a Cournot-
Nash equilibrium b̂.

Proof. Following Sahi and Yao (1989), we define the notion of a δ-positive ϵ-
Cournot-Nash equilibrium. Let T̄1 ⊂ T1 be a set consisting of two traders in
T1 for whom Assumption 4′ holds. Moreover, let δ = mint∈T̄1

{1
l min{w1(t),

. . . ,wl(t)}}. We say that the correspondenceBδ : T → P(Rl2
+) is a δ-positive

strategy correspondence if Bδ(t) = B(t) ∩ {(bij) ∈ Rl2
+ :

∑
i ̸∈J

∑
j∈J(bij +

bji) ≥ δ, for each J ⊆ {1, . . . , l}}, for each t ∈ T̄1, and if Bδ(t) = B(t), for
each t ∈ T \ T̄1. Moreover, we say that a strategy selection b is δ-positive
if b(t) ∈ Bδ(t), for each t ∈ T . Finally, we say that an ϵ-Cournot-Nash
equilibrium b̂ϵ is δ-positive if b̂ϵ is a δ-positive strategy selection. The
following lemma is a strengthening of Lemma 1.

Lemma 2. For each ϵ > 0, there exists a δ-positive ϵ-Cournot-Nash equi-
librium b̂ϵ.

Proof. See the proof of Lemma 4 in Busetto et al. (2011).

We show now that the sequence of δ-positive ϵ-Cournot-Nash equilib-
ria has a limit and that this limit is a δ-positive ϵ-Cournot-Nash equilib-
rium. Following Busetto et al. (2011), in this part of the proof we apply
again the generalization of the Fatou’s lemma in several dimensions pro-
vided by Artstein (1979). Let ϵn = 1

n , n = 1, 2, . . .. By Lemma 2, for each

n = 1, 2, . . ., there is a δ-positive ϵ-Cournot-Nash equilibrium b̂ϵn . The

fact that the sequence { ¯̂B
ϵn
} belongs to the compact set {(bij) ∈ Rl2

+ :
bij ≤

∫
T1

wi(t) dµ +
∫
T0

wi(t) dµ, i, j = 1, . . . , l,
∑

i̸∈J
∑

j∈J(bij + bji) ≥∫
T̄1

δ dµ, for each J ⊆ {1, . . . , l}} and the sequence {p̂ϵn}, where p̂ϵn =

p(b̂ϵn), belongs to the unit simplex ∆, for each n = 1, 2, . . ., implies that

there is a subsequence { ¯̂B
ϵkn} of the sequence { ¯̂B

ϵn
} which converges to

an element of the set {(bij) ∈ Rl2
+ : bij ≤

∫
T1

wi(t) dµ +
∫
T0

wi(t) dµ, i, j =

1, . . . , l,
∑

i̸∈J
∑

j∈J(bij + bji) ≥
∫
T̄1

δ dµ, for each J ⊆ {1, . . . , l}} and a
subsequence {p̂ϵkn} of the sequence {p̂ϵn} which converges to a price vector
p̂ ∈ ∆, with p̂ ≫ 0, by Theorem 1. Since the sequence {b̂ϵkn} satisfies the
assumptions of Theorem A in Artstein (1979), there is a function b̂ such
that b̂(t) is a limit point of the sequence {b̂ϵkn (t)}, for each t ∈ T , and such
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that the sequence { ¯̂B
ϵkn} converges to

¯̂
B. The matrix

¯̂
B\ b(t) is irreducible,

for each t ∈ T , in the same cases where it is irreducible in the proof of
Busetto et al. (2011) as b̂ is δ-positive and there are at least two traders in
T1 for whom w(t) ≫ 0, by Assumption 4′. Then, from the same argument
used in the proof of Cases 1, 2, and 3 in Busetto et al. (2011), it follows
that ut(x(t, b̂(t), p(b̂))) ≥ ut(x(t, b(t), p(b̂ \ b(t)))), for each b(t) ∈ B(t) and
for each t ∈ T . Hence, b̂ is a Cournot-Nash equilibrium.

6 Conclusion

In this paper, we have reconsidered the issues concerning the existence of a
Cournot-Nash equilibrium for mixed exchange economies. In particular, we
have shown a general price convergence theorem and an existence theorem
for the mixed version of the Shapley window model which are both based
on the Walrasian properties of atomless part’s behavior. Our Theorem 2
provides an existence result which can be applied to economic structures left
uncovered by the existence theorem proved by Busetto et al. (2011): In our
theorem, all traders may indeed have corner endowments and indifference
curves which touch the boundary of the consumption set. In particular,
it guarantees the existence of a Cournot-Nash equilibrium for the case of
bilateral oligopoly with a competitive fringe for each commodity, thereby
contributing to the growing literature on this type of economic structure,
initiated by Gabszewicz and Michel (1997) and further analyzed by Bloch
and Ghosal (1997), Bloch and Ferrer (2001), Dickson and Hartley (2008),
Amir and Bloch (2009), among others.

We leave for further research the problem of proving the existence of a
Cournot-Nash equilibrium for a bilateral oligopoly configuration without a
competitive fringe, a case which violates Assumption 1 of Theorem 2. We
have also exhibited the generality of our price convergence theorem, by prov-
ing another existence existence result, Theorem 3, less requiring than the
existence theorem proved by Busetto et al. (2011), since it assumes that all
commodities are held by at least two atoms and, in the aggregate, by the
atomless part without imposing further assumptions on traders’ preferences
beyond continuity, strong monotonicity, quasi-concavity, and measurability.
Moreover, we conjecture that, under the same assumptions, the price conver-
gence theorem could be used to prove an asymptotic equivalence between
Cournot-Nash and Walras equilibria similar to that obtained by Busetto,
Codognato, and Ghosal (2016): we also leave this proof for future research.
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