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Abstract

In this paper, we reconsider two models of noncooperative oligopoly
in general equilibrium based on a particular strategic market game, the
so called Shapley’s window model, introduced by Busetto et al. (2008),
(2011) under the assumption that preferences of the traders belonging
to the atomless part are represented by Cobb-Douglas utility functions.
First, we prove the existence of a Cournot-Nash equilibrium. Then, we
show that the set of the Cournot-Walras equilibrium allocations is a
subset of the set of the Cournot-Nash equilibrium allocations. Finally,
we partially replicate the exchange economy by increasing the number
of atoms without affecting the atomless part while ensuring that the
measure space of agents remains finite. We show that any sequence
of Cournot-Nash equilibrium allocations of the strategic market game
associated with the partially replicated exchange economies approxi-
mates a Walras equilibrium allocation of the original exchange econ-
omy.
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1 Introduction

Noncooperative oligopoly in interrelated markets has been modeled in two
main directions. The first is the strategic market games approach, developed
by Shapley and Shubik (see also Dubey and Shubik (1977), Postlewaite and
Schmeidler (1978), Okuno et al. (1980), Mas-Colell (1982), Sahi and Yao
(1989), Amir et al. (1990), Peck et al. (1992), Dubey and Shapley (1994),
among others). In this class of models, all traders behave strategically and
prices are determined according to non-Walrasian pricing rules. The second
is the Cournot-Walras approach, developed by Gabszewicz and Vial (1972)
for economies with production (see also Roberts and Sonnenschein (1977),
Roberts (1980), Mas-Colell (1982), Dierker and Grodal (1986), among oth-
ers), and by Codognato and Gabszewicz (1991) for pure exchange economies
(see also Codognato and Gabszewicz (1993), d’Aspremont et al. (1997),
Gabszewicz and Michel (1997), Shitovitz (1997), Julien and Tricou (2005),
(2009), among others). In this class of models, some agents behave strategi-
cally while others behave competitively and prices are determined according
to the Walrasian pricing rule. Then, strategic agents determine their strate-
gies as in the Cournot game (see Cournot (1838)) taking into account the
Walrasian price correspondence. Both classes of models aim at studying
the working and the consequences of market power in a general equilibrium
framework.

More recently, Busetto et al. (2008), (2011) introduced two models of
noncooperative oligopoly in general equilibrium based on the Shapley’s win-
dow model. This model was originally proposed by Lloyd S. Shapley and
further analyzed by Sahi and Yao (1989) in exchange economies with a finite
number of traders, and Codognato and Ghosal (2000) in exchange economies
with an atomless continuum of traders. In particular, Busetto et al. (2011),
taking inspiration from a seminal paper by Okuno et al. (1980), considered
the Cournot-Nash equilibrium of the Shapley’s window model associated
with an exchange economy à la Shitovitz (see Shitovitz (1973)) with atoms
and an atomless part, whereas Busetto et al. (2008) provided a respecifi-
cation à la Cournot-Walras of this model assuming that atoms behave à la
Cournot while the atomless part behaves à la Walras.

In this paper, we reconsider these two models under the assumption that
preferences of the traders belonging to the atomless part are represented by
Cobb-Douglas utility functions. Beyond their tractability to compute solu-
tions in theoretical models, Cobb-Douglas utility functions are very useful
to understand the relationships among equilibrium concepts.
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We first show the existence of a Cournot-Nash equilibrium under the
following set of assumptions: (i) each trader is endowed with a strictly pos-
itive amount of at least one commodity and each commodity is held, in the
aggregate, by the atomless part; (ii) atoms’ utility functions are continu-
ous, strongly monotone, and quasi-concave; (iii) traders’ utility functions
are jointly measurable. Busetto et al. (2011) proved the existence of a
Cournot-Nash equilibrium under less restrictive assumptions on the atom-
less part’s endowments and preferences. In particular, they assumed that
the atomless part has continuous, strongly monotone, and quasi-concave
preferences without requiring that it holds, in the aggregate, each commod-
ity. Nevertheless, our proof is not a special case of theirs as they had to
impose, following Sahi and Yao (1989), a further restrictive assumption on
atoms, namely that there exists at least two atoms with endowments and
indifference curves contained in the strict interior of the commodity space.
Therefore, our proof allows dealing with cases where all atoms have cor-
ner endowments and indifference curves which cross the boundary of the
commodity space.

Then, we provide, following Busetto et al. (2008), a respecification à
la Cournot-Walras of our model and we prove prove that, under the same
assumptions of our existence theorem, the set of the Cournot-Walras equi-
librium allocations is a subset of the Cournot-Nash equilibrium allocations.
Busetto et al. (2008) provided an example which shows that this result may
not hold if preferences of the traders belonging to the atomless part are not
represented by Cobb-Douglas utility functions.

Finally, we consider the limit relationship between the Cournot-Nash
equilibrium allocations and the Walras equilibrium allocations of our model.
Busetto et al. (2012) proved a limit result under the same assumptions of
their existence theorem. Here, we use the same kind of replication they pro-
posed, namely, we partially replicate the exchange economy by increasing
the number of atoms without affecting the atomless part while ensuring that
the measure space of agents is finite. We show that, under the same assump-
tions which sustain our existence theorem, any sequence of Cournot-Nash
equilibrium allocation of the Shapley’s window model associated with the
partially replicated exchange economy approximates the Walras equilibrium
allocation of the original exchange economy. Our proof and that provided
by Busetto et al. (2008) differ as they are drawn from different sufficient
conditions.

The paper is organized as follows. In Section 2, we present the math-
ematical model and state the main assumptions. In Section 3, we show
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the existence of the Cournot-Nash equilibrium. Section 4 is devoted to the
Cournot-Walras equilibrium. Section 5 aims at studying the relationship
between the Cournot-Nash and the Cournot-Walras equilibrium. In Section
6, we show the limit relationship between the Cournot-Nash and the Walras
equilibrium.

2 The mathematical model

We consider a pure exchange economy, E , with large traders, represented
as atoms, and small traders, represented by an atomless part. The space
of traders is denoted by the measure space (T, T , µ), where T is the set of
traders, T is the σ-algebra of all µ-measurable subsets of T , and µ is a real
valued, non-negative, countably additive measure defined on T . We assume
that (T, T , µ) is finite, i.e., µ(T ) < ∞. This implies that the measure space
(T, T , µ) contains at most countably many atoms. Let T1 denote the set of
atoms and T0 = T \ T1 the atomless part of T . A null set of traders is a set
of measure 0. Null sets of traders are systematically ignored throughout the
paper. Thus, a statement asserted for “each” trader in a certain set is to
be understood to hold for all such traders except possibly for a null set of
traders. The word “integrable” is to be understood in the sense of Lebesgue.

There are l different commodities. A commodity bundle is a point in Rl
+.

An assignment (of commodity bundles to traders) is an integrable function
x: T → Rl

+. There is a fixed initial assignment w, satisfying the following
assumption.

Assumption 1. w(t) > 0, for each t ∈ T ,
∫
T0

w(t) dµ À 0.

Furthermore, as in Sahi and Yao (1989), we can assume, for convenience,
that

∫
T wj(t) dµ = 1, j = 1, . . . , l. An allocation is an assignment x for which∫

T x(t) dµ =
∫
T w(t) dµ. The preferences of each trader t ∈ T are described

by a utility function ut : R
l
+ → R, satisfying the following assumptions.

Assumption 2. ut : R
l
+ → R is continuous, strongly monotone, and quasi-

concave, for each t ∈ T1, ut(x) = x1α
1(t) · · ·xlαl(t), for each t ∈ T0 and

for each x ∈ Rl
+, where α: T0 → Rl

++ is a function such that αj(t) > 0,

j = 1, . . . , l,
∑l

j=1α
j(t) = 1, for each t ∈ T0.

Let B(Rl
+) denote the Borel σ-algebra of Rl

+. Moreover, let T ⊗B
denote the σ-algebra generated by the sets E × F such that E ∈ T and
F ∈ B.
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Assumption 3. u : T × Rl
+ → R given by u(t, x) = ut(x), for each t ∈ T

and for each x ∈ Rl
+, is T

⊗B-measurable.

A price vector is a vector p ∈ Rl
+. We define, for each p ∈ Rl

+, a
correspondence ∆p : T → P(Rl) such that, for each t ∈ T , ∆p(t) = {x ∈
Rl

+ : px = pw(t)}, a correspondence Ψp : T → P(Rl) such that, for each
t ∈ T , Ψp(t) = {x ∈ Rl

+ : for all y ∈ ∆p(t), ut(x) ≥ ut(y)}, and finally
a correspondence Xp : T → P(Rl) such that, for each t ∈ T , Xp(t) =
∆p(t) ∩Ψp(t).

A Walras equilibrium of E is a pair (p∗,x∗), consisting of a price vector
p∗ and an allocation x∗, such that x∗(t) ∈ Xp∗(t), for each t ∈ T .

By Assumption 2, for each p ∈ Rl
++, it is possible to define the atom-

less part’s Walrasian demands as a function x0(·, p) : T0 → Rl
+ such that

x0(t, p) = Xp, for each t ∈ T0. It is immediate to verify that x0j(t, p) =
αj(t)

∑l
i=1 p

iwi(t)

pj
, j = 1, . . . , l, for each t ∈ T0. The following proposition

shows that this function is integrable.

Proposition 1. Under Assumptions 1, 2, and 3, the function x0(·, p) is
integrable, for each p ∈ Rl

++.

Proof. Let p ∈ Rl
++. The restriction of w to T0 is integrable as w is

integrable. Now, we prove that α is a measurable function. Consider a
commodity bundle y ∈ Rl

++. Let u0(·, y) denote the restriction of u(·, y)
to T0. The function u(·, y) must be measurable as, by Assumption 3, u(·, ·)
is T ⊗B-measurable (see Theorem 4.48 in Aliprantis and Border (2006),
p. 152). Then, the function u0(·, y) is also measurable. Suppose that α
is not measurable. Then, there is an open set O ∈ Rl

+ such that α−1(O)
is not a µ-measurable set. Let f : Rl → Rl

++ be a function such that
f(v) = (yv11 , . . . , yvll ), for each v ∈ Rl. f(O) is an open set as f is a
homeomorphism. Suppose that τ ∈ α−1(O). Then, f(α(τ)) ∈ f(O). But
then, τ ∈ (u0(·, y))−1(f(O)). Therefore, α−1(O) ⊂ (u0(·, y))−1(f(O)). Sup-
pose that τ ∈ (u0(·, y))−1(f(O)). Moreover, suppose that τ /∈ α−1(O).
Then, α(τ) /∈ O. But then, u0(τ, y) /∈ f(O), a contradiction. Therefore,
(u0(·, y))−1(f(O)) ⊂ α−1(O). Then, α−1(O) = (u0(·, y))−1(f(O)). But
then, α−1(O) is µ-measurable as u0(·, y) is measurable, a contradiction.
Therefore, α is measurable. Hence, x0(·, p) is integrable as it is measurable

and x0j(t, p) <
∑l

i=1 p
iwi(t)

pj
, j = 1, . . . , l, for each t ∈ T0.
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3 Cournot-Nash equilibrium

We introduce now the strategic market game, Γ, associated with E . Let
b ∈ Rl2

+ be a vector such that b = (b11, b12, . . . , bll−1, bll). A strategy corre-

spondence is a correspondence B : T → P(Rl2
+) such that, for each t ∈ T ,

B(t) = {b ∈ Rl2
+ :

∑l
j=1 bij ≤ wi(t), i = 1, . . . , l}. A strategy selection is an

integrable function b : T → Rl2 , such that, for each t ∈ T , b(t) ∈ B(t). For
each t ∈ T , bij(t), i, j = 1, . . . , l, represents the amount of commodity i that
trader t offers in exchange for commodity j. Given a strategy selection b,
we define the aggregate matrix B̄ = (

∫
T bij(t) dµ). Moreover, we denote by

b \ b(t) a strategy selection obtained by replacing b(t) in b with b ∈ B(t).
With a slight abuse of notation, b \ b(t) will also represent the value of the
strategy selection b \ b(t) at t.

Then, we introduce two further definitions (see Sahi and Yao (1989)).

Definition 1. A nonnegative square matrix A is said to be irreducible if,
for every pair (i, j), with i 6= j, there is a positive integer k = k(i, j) such

that a
(k)
ij > 0, where a

(k)
ij denotes the ij-th entry of the k-th power Ak of A.

Definition 2. Given a strategy selection b, a price vector p is market clear-
ing if

p ∈ Rl
++,

l∑

i=1

pib̄ij = pj(
l∑

i=1

b̄ji), j = 1, . . . , l. (1)

By Lemma 1 in Sahi and Yao (1989), there is a unique, up to a scalar
multiple, price vector p satisfying (1) if and only if B̄ is irreducible. Then,
we denote by p(b) a function which associates with each strategy selection
b the unique, up to a scalar multiple, price vector p satisfying (1), if B̄ is
irreducible, and is equal to 0, otherwise.

Given a strategy selection b and a price vector p, consider the assignment
determined as follows:

xj(t,b(t), p) = wj(t)−
l∑

i=1

bji(t) +
l∑

i=1

bij(t)
pi

pj
, if p ∈ Rl

++,

xj(t,b(t), p) = wj(t), otherwise,

j = 1, . . . , l, for each t ∈ T .
According to this rule, given a strategy selection b and the function p(b),

the traders’ final holdings are determined as follows:

x(t) = x(t,b(t), p(b)),
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for each t ∈ T . It is straightforward to show that the assignment corre-
sponding to the final holdings is an allocation.

This reformulation of the Shapley’s window model allows us to define
the following concept of Cournot-Nash equilibrium for exchange economies
with an atomless part (see Codognato and Ghosal (2000)).

Definition 3. A strategy selection b̂ such that ¯̂B is irreducible is a Cournot-
Nash equilibrium of Γ if

ut(x(t, b̂(t), p(b̂))) ≥ ut(x(t, b̂ \ b(t), p(b̂ \ b(t)))),

for each b ∈ B(t) and for each t ∈ T .

In what follows, we shall make use of a function b0 : T0 → Rl2
+ such

that b0
ij(t) = wi(t)αj(t), i, j = 1, . . . , l, for each t ∈ T0. b0(t) ∈ B(t), for

each t ∈ T0, as w
i(t)αj(t) ≥ 0, i, j = 1, . . . , l, and

∑l
j=1w

i(t)αj(t) = wi(t),
i = 1, . . . , l, for each t ∈ T0. The following proposition shows that the
function b0 is integrable.

Proposition 2. Under Assumptions 1, 2, and 3, the function b0 is inte-
grable.

Proof. b0 is measurable as the restriction of w to T0 is measurable and we
know, from the proof of Proposition 1, that α is measurable. Then, b0 is
integrable as b0

ij(t) ≤ wi(t), i, j = 1, . . . , l, for each t ∈ T0.

We now define a game, which we call Γ1, where only the atoms act
strategically, taking b0 as given. The game Γ1 can be characterized, mutatis
mutandis, as Γ. Let b1 : T1 → Rl2

+ be a function such that b1(t) ∈ B(t),
for each t ∈ T1. b1 is integrable as

∑
t∈T1

∫
t b

1(t) dµ ≤ ∑
t∈T1

∫
tw(t) dµ =∫

T1
w(t) dµ < ∞. Then, b1 is a strategy selection of Γ1. Given a strategy

selection b1 of Γ1, let b
10 : T → Rl2

+ be a function such that b10(t) = b1(t),
for each t ∈ T1, and b10(t) = b0(t), for each t ∈ T0. Then, b

10 is a strategy
selection of Γ as

∫
T1

b1(t) dµ +
∫
T0

b0(t) dµ ≤ ∫
T1

w(t) dµ +
∫
T0

w(t) dµ =∫
T w(t) dµ < ∞. Consider an atom τ ∈ T1. Given a strategy selection
b10, consider a vector b̄ ∈ B(τ). Suppose that b̄ii 6= b10

ii (τ), for at least
a pair (i, i), and b̄ij = b10

ij (τ), for the remaining pairs (i, j). Then, it is

straightforward to verify that p(b10) = p(b10 \ b̄(τ)). Therefore, as in Sahi
and Yao (1989), we can assume, for convenience, that, given a strategy
selection b10,

∑l
j=1 b

10
ij (t) = wi(t), i = 1, . . . , l, for each t ∈ T1. Then, given
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a strategy selection b10, the corresponding aggregate matrix B̄10 is row-
stochastic. Moreover, B̄10 is irreducible as

∫
T0

w(t) dµ À 0 and α(t) À 0,
for each t ∈ T0.

We can now provide the definition of a Cournot-Nash equilibrium of Γ1.

Definition 4. A strategy selection b̂1 is a Cournot-Nash equilibrium of Γ1

if
ut(x(t, b̂

1(t), p(b̂10)) ≥ ut(x(t, b̂
1 \ b(t), p(b̂10 \ b(t)))),

for each b ∈ B(t) and for each t ∈ T1.

The following argument shows that Lemmas 3 and 4 in Sahi and Yao
(1989) still hold in our framework. Consider an atom τ ∈ T1. Given a
strategy selection b10, let D be a matrix such that dij = b̄10

ij − b10
ij (τ)µ(τ),

i, j = 1, . . . , l. Then, from (1), we have

l∑

i=1

pi(b10)(dij + b10
ij (τ)µ(τ)) = pj(b10)(

l∑

i=1

(dji + b10
ji (τ)µ(τ)), j = 1, . . . , l,

from which we obtain

−
l∑

i=1

b10
ji (τ)+

l∑

i=1

b10
ij (τ)

pi(b10)

pj(b10)
=

∑l
i=1 dji

µ(τ)
−
∑l

i=1 dij

µ(τ)

pi(b10)

pj(b10)
, j = 1, . . . , l.

Then,

xj(τ,b10(τ), p(b10)) = wj(τ) +

∑l
i=1 dji

µ(τ)
−

∑l
i=1 dij

µ(τ)

pi(b10)

pj(b10)
, j = 1, . . . , l,

from which we obtain

(µ(τ))xj(τ,b10(τ), p(b10)) = 1−
∑l

i=1 dijp
i(b10)

pj(b10)
, j = 1, . . . , l. (2)

It is possible to show, but we omit the details, that Lemmas 3 and 4 in
Sahi and Yao (1989) still hold when their matrices C and A are replaced,
respectively, with D and B̄10, and their Equation (14) is replaced with (2).

We can now prove the existence of a Cournot-Nash equilibrium of Γ.

Theorem 1. Under Assumptions 1, 2, and 3, there exists a Cournot-Nash
equilibrium of Γ, b̂.

Proof. We shall consider the case where T1 contains countably infinite
atoms as the argument we use for this case holds, a fortiori, when it contains
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a finite number of atoms. Let Φ :
∏

t∈T1
B(t) → ∏

t∈T1
B(t) be a correspon-

dence such that Φ(b1) = {b1 ∈ ∏
t∈T1

B(t) : b1(t) ∈ Φt(b
1), for each t ∈

T1} where, for each t ∈ T1, the correspondence Φt :
∏

t∈T1
B(t) → B(t)

is such that Φt(b
1) = argmax{ut(x(t,b1 \ b(t), p(b10 \ b(t)))) : b ∈ B(t)}.∏

t∈T1
Rl2

+ is a locally convex Hausdorff space as it is a metric space.
∏

t∈T1

B(t) is a nonempty, convex, and compact subset of
∏

t∈T1
Rl2

+ as B(t) is
nonempty, convex, and compact, for each t ∈ T1. Consider a trader τ ∈ T1.
For each b1 ∈ ∏

t∈T1
B(t), Φτ (b

1) is nonempty, convex, and closed, as
Lemma 4 in Sahi and Yao (1989) holds in our framework. Moreover, Φτ is
upper hemicontinuous by the Berge Maximum Theorem (see Theorem 17.31
in Aliprantis and Border (2006), p. 570). Then, Φτ has a closed graph, by
the Closed Graph Theorem (see Theorem 17.11 in Aliprantis and Border
(2006), p. 561) as

∏
t∈T1

B(t) is compact and Φτ is upper hemicontinuous
and closed-valued. But then, the correspondence Φ has nonempty, con-
vex values, and a closed graph. Therefore, by the Kakutani-Fan-Glicksberg
Theorem (see Theorem 17.55 in Aliprantis and Border (2006), p. 583) there
exists a fixed point b̂1 of Φ, which is a Cournot-Nash equilibrium b̂1 of Γ1.
Let b̂ be a strategy selection of Γ such that b̂(t) = b̂10(t), for each t ∈ T .
¯̂B is irreducible as ¯̂B

10
is irreducible. Consider a trader τ ∈ T1. Then,

uτ (x(τ, b̂(τ), p(b̂))) ≥ uτ (x(τ, b̂ \ b(τ), p(b̂ \ b(τ)))), for each b ∈ B(τ),
as b̂1 is a Cournot-Nash equilibrium of Γ1. Consider a trader τ ∈ T0.

x(τ, b̂(τ), p(b̂)) ∈ Xp(b̂)(τ) as xj(τ, b̂(τ), p(b̂)) =
αj(τ)

∑l
i=1 p

i(b̂)wi(τ)

pj(b̂)
, j =

1, . . . , l. Suppose that there exists b̄ ∈ B(τ) such that uτ (x(τ, b̂ \ b̄(τ), p(b̂ \
b̄(τ)))) > uτ (x(τ, b̂(τ), p(b̂))). It is immediate to verify that p(b̂ \ b̄(τ)) =
p(b̂). Let x̄ = x(τ, b̂ \ b̄(τ), p(b̂)). Then, it is straightforward so show that
x̄ ∈ ∆p(b̂)(τ). But then, uτ (x̄) > uτ (x(τ, b̂(τ), p(b̂))) and x̄ ∈ ∆p(b̂)(τ), a

contradiction. Therefore, ut(x(t, b̂(t), p(b̂))) ≥ ut(x(t, b̂ \ b(t), p(b̂ \ b(t)))),
for each b ∈ B(t) and for each t ∈ T . Hence, b̂ is a Cournot-Nash equilibrium
of Γ.

A Cournot-Nash equilibrium b̂ of Γ is said to be a Cobb-Douglas-Cournot-
Nash equilibrium of Γ if b̂(t) = b0, for each t ∈ T0. The following Corollary
is a straightforward consequence of Theorem 1.

Corollary 1. Under Assumptions 1, 2, and 3, there exists a Cobb-Douglas-
Cournot-Nash equilibrium of Γ, b̂.
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4 Cournot-Walras equilibrium

In this section, we describe the concept of Cournot-Walras equilibrium pro-
posed by Busetto et al. (2008). The atomless part has Walrasian de-
mands represented by the function x0(·, p) : T0 → Rl

+, defined in Section

2. Consider now the atoms’ strategies. Let e ∈ Rl2 be a vector such that
e = (e11, e12, . . . , ell−1, ell). A strategy correspondence is a correspondence
E : T1 → P(Rl2) such that, for each t ∈ T1, E(t) = {e ∈ Rl2 : eij ≥
0, i, j = 1, . . . , l;

∑l
j=1 eij ≤ wi(t), i = 1, . . . , l}. A strategy selection is an

integrable function e : T1 → Rl2 such that, for each t ∈ T1, e(t) ∈ E(t).
For each t ∈ T1, eij(t), i, j = 1, . . . , l, represents the amount of commodity
i that trader t offers in exchange for commodity j. We denote by e \ e(t)
a strategy selection obtained by replacing e(t) in e with e ∈ E(t). With a
slight abuse of notation, e \ e(t) will also denote the value of the strategy
selection e \ e(t) at t. Given a strategy selection e, consider the following
equation:

∫

T0

x0j(t, p) dµ+
l∑

i=1

∫

T1

eij(t) dµ
pi

pj
=

∫

T0

wj(t) dµ+
l∑

i=1

∫

T1

eji(t) dµ, (3)

j = 1, . . . , l. The following proposition shows that there exists a unique, up
to a scalar multiple, price vector p ∈ Rl

++ which satisfies Equation (3).

Proposition 3. Under Assumptions 1, 2, and 3, for each strategy selection
e, that there exists a unique, up to a scalar multiple, price vector p ∈ Rl

++

which satisfies Equation (3).

Proof. Consider a strategy selection e. Let e10 : T → Rl2
+ be a function

such that e10(t) = e(t), for each t ∈ T1, and e10(t) = b0(t), for each t ∈ T0.
Then, e10 is integrable by the same argument used for the function b10.
Define the aggregate matrix Ē10 = (

∫
T e10ij (t) dµ). Ē10 is irreducible by the

same argument used for the matrix B̄10. (3) can be written as

l∑

i=1

pi(

∫

T0

wi(t)αj(t) dµ+

∫

T1

eij(t) dµ)

= pj(
l∑

i=1

(

∫

T0

wj(t)αi(t) dµ+

∫

T1

eji(t) dµ)), j = 1, . . . , l.
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Then, (3) can be rewritten as

l∑

i=1

piē10ij = pj(
l∑

i=1

ē10ji ), j = 1, . . . , l. (4)

By Lemma 1 in Sahi and Yao (1989), there is a unique, up to a scalar
multiple, price vector p ∈ Rl

++ satisfying (4) as Ē10 is irreducible. Hence,
there exists a unique, up to a scalar multiple, price vector p ∈ Rl

++ which
satisfies Equation (3).

We denote by p(e) a function which associates, with each strategy selec-
tion e, the unique, up to a scalar multiple, price vector p satisfying (3). It is
straightforward to verify that p(e′) = p(e′′) if

∫
T1

e′(t) dµ =
∫
T1

e′′(t) dµ. For
each strategy selection e, let x1(·, e(·), p(e)) : T1 → Rl

+ denote a function
such that

x1j(t, e(t), p(e)) = wj(t)−
l∑

i=1

eji(t) +

l∑

i=1

eij(t)
pi(e)

pj(e)
, (5)

j = 1, . . . , l, for each t ∈ T1. Given a strategy selection e, taking into
account the structure of the traders’ measure space, Proposition 3, and
Equation (3), it is straightforward to show that the function x(t) such that
x(t) = x1(t, e(t), p(e)), for all t ∈ T1, and x(t) = x0(t, p(e)), for all t ∈ T0,
is an allocation.

At this stage, we are able to define the concept of Cournot-Walras equi-
librium.

Definition 5. A pair (ẽ, x̃), consisting of a strategy selection ẽ and an
allocation x̃ such that x̃(t) = x1(t, ẽ(t), p(ẽ)), for each t ∈ T1, and x̃(t) =
x0(t, p(ẽ)), for each t ∈ T0, is a Cournot-Walras equilibrium of E if

ut(x
1(t, ẽ(t), p(ẽ))) ≥ ut(x

1(t, ẽ \ e(t), p(ẽ \ e(t)))),

for each e ∈ E(t) and for each t ∈ T1.

5 Cournot-Nash and Cournot-Walras equilibrium

The following theorem shows the equivalence between the set of the Cobb-
Douglas-Cournot-Nash equilibrium allocations and the set of the Cournot-
Walras equilibrium allocations.

11



Theorem 2. Under Assumptions 1, 2, and 3, (i) if b̂ is a Cobb-Douglas-
Cournot-Nash equilibrium of Γ, then there is a strategy selection ê such that
the pair (ê, x̂), where x̂(t) = x(t, b̂(t), p(b̂)) = x1(t, ê(t), p10(ê)), for each t ∈
T1, and x̂(t) = x(t, b̂(t), p(b̂)) = x0(t, p10(ê)), for each t ∈ T0, is a Cournot-
Walras equilibrium of E ; (ii) if (ẽ, x̃) is a Cournot-Walras equilibrium of E ,
then there is a Cobb-Douglas-Cournot-Nash equilibrium b̃ of Γ such that
x̃(t) = x(t, b̃(t), p(b̃)), for each t ∈ T .

Proof. (i) Let b̂ be a Cobb-Douglas-Cournot-Nash equilibrium of Γ. Let ê
be a strategy selection such that ê(t) = b̂(t), for each t ∈ T1. Then, p(ê) =

p(b̂) as ¯̂E
10

= ¯̂B and p(b̂) satisfies Equation (1). But then, it is straightfor-
ward to verify that x(t, b̂(t), p(b̂)) = x1(t, ê(t), p(ê)), for each t ∈ T1, and
x(t, b̂(t), p(b̂)) = x0(t, p(ê)), each t ∈ T0. Suppose that there is a trader
τ ∈ T1 and a strategy ē ∈ E(τ) such that uτ (x

1(τ, ê \ ē(τ), p(ê \ ē(τ)))) >
uτ (x

1(τ, ê(τ), p(ê))). Then, uτ (x(τ, b̂ \ ē(τ), p(b̂ \ ē(τ)))) = uτ (x
1(τ, ê \

ē(τ), p(ê \ ē(τ)))) > uτ (x
1(τ, ê(τ), p(ê))) = uτ (x(τ, b̂(τ), p(b̂))) as p10(ê \

ē(τ)) = p(b̂ \ ē(τ)), a contradiction. Therefore, ut(x
1(t, ê(t), p(ê))) ≥

ut(x
1(t, ê\e(t), p(ê\e(t)))), for each e ∈ E(t) and for each t ∈ T1. Hence, the

pair (ê, x̂), where x̂(t) = x(t, b̂(t), p(b̂)) = x1(t, ê(t), p10(ê)), for each t ∈ T1,
and x̂(t) = x(t, b̂(t), p(b̂)) = x0(t, p10(ê)), for each t ∈ T0, is a Cournot-
Walras equilibrium of E . (ii) Let (ẽ, x̃) be a Cournot-Walras equilibrium of
E . Let b̃ be a strategy selection such that b̃(t) = ẽ10(t), for each t ∈ T .

Then, ¯̃B is irreducible and p(b̃) = p(ẽ) as ¯̃B = ¯̃E
10

and p(ẽ) satisfies Equa-
tion (4). But then, it is straightforward to verify that x̃(t) = x(t, b̃(t), p(b̃)),
for each t ∈ T . Suppose that there is a trader τ ∈ T1 and a strategy
b̄ ∈ B(τ) such that uτ (x(τ, b̃ \ b̄(τ), p(b̃ \ b̄(τ)))) > uτ (x(τ, b̃(τ), p(b̃))).
Then, uτ (x

1(τ, ẽ \ b̄(τ), p(ẽ \ b̄(τ)))) = uτ (x(τ, b̃ \ b̄(τ), p(b̃ \ b̄(τ)))) >
uτ (x(τ, b̃(τ), p(b̃))) = uτ (x

1(τ, ẽ(τ), p(ẽ))), as p(b̃ \ b̄(τ)) = p(ẽ \ b̄(τ)),
a contradiction. Therefore, ut(x(t, b̃(t), p(b̃)) ≥ ut(x(t, b̃\ b(t), p(b̃\ b(t)))),
for each b ∈ B(t) and for each t ∈ T1. Moreover, ut(x(t, b̃(t), p(b̃)) ≥
ut(x(t, b̃ \ b(t), p(b̃ \ b(t)))), for each b ∈ B(t) and for each t ∈ T0, by the
same argument used in the proof of Theorem 1. Hence, b̃ is a Cobb-Douglas-
Cournot-Nash equilibrium of Γ.

The following corollary is a straightforward consequence of Theorem 2.

Corollary 2. Under Assumptions 1, 2, and 3, there exists a Cournot-Walras
equilibrium of E , (ẽ, x̃).
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6 Cournot-Nash and Walras equilibrium

As in Busetto et al. (2012), we consider the replication à la Cournot of
E which, by analogy with the replication proposed by Cournot (1838) in
a partial equilibrium framework, consists in replicating only the atoms of
E , while making them asymptotically negligible. Let En be an exchange
economy characterized as in Section 2 where each atom is replicated n times.
For each t ∈ T1, let tr denote r-th element of the n-fold replication of t. We
assume that w(tr) = w(ts) = w(t), utr(·) = uts(·) = ut(·), r, s = 1, . . . , n,

µ(tr) = µ(t)
n , r = 1, . . . , n, for each t ∈ T1.

The strategic market game Γn associated with En can then be charac-
terized, mutatis mutandis, as in Section 2. A strategy selection b of Γn is
atom-type-symmetric if bn(tr) = bn(ts), r, s = 1, . . . , n, for each t ∈ T1. We
can now provide the definition of an atom-type-symmetric Cournot-Nash
equilibrium of Γn.

Definition 6. A strategy selection b̂ such that ¯̂B is irreducible is an atom-
type-symmetric Cournot-Nash equilibrium of Γn if b̂ is atom-type-symmetric
and

utr(x(tr, b̂(tr), p(b̂))) ≥ utr(x(tr, b̂ \ b(tr), p(b̂ \ b(tr)))),
for all b ∈ B(tr), r = 1, . . . , n, and for each t ∈ T1;

ut(x(t, b̂(t), p(b̂))) ≥ ut(x(t, b̂ \ b(t), p(b̂ \ b(t)))),
for all b ∈ B(t) and for each t ∈ T0.

We now define a game, which we call Γn
1 , where only the atoms act

strategically, taking b0 as given. The game Γn
1 can be characterized, mutatis

mutandis, as Γ1. Moreover, b1 and b10(t) can be defined for Γn
1 , mutatis

mutandis, as they were defined for Γ1. Then, the notion of a Cournot-Nash
equilibrium b̂1 of Γn

1 can be provided as in Definition 4 and the existence of
such an equilibrium can be proved using the same argument as in Theorem
1. A strategy selection b1 of Γn

1 is atom-type-symmetric if bn(tr) = bn(ts),
r, s = 1, . . . , n, for each t ∈ T1.

The following theorem shows the existence of an atom-type-symmetric
Cournot-Nash equilibrium b̂1 of Γn.

Theorem 3. Under Assumptions 1, 2, and 3, there exists an atom-type-
symmetric Cournot-Nash equilibrium of Γn, b̂.

Proof. We shall consider the case where T1 contains countably infinite
atoms as the argument we use for this case holds, a fortiori, when it contains

13



a finite number of atoms. Let B∗ denote the subset of
∏

t∈T1

∏n
r=1B(tr)

which contains all the atom-type-symmetric strategy selections of Γn
1 . B

∗ is
convex and compact asB∗ is closed, B∗ ⊂ ∏

t∈T1

∏n
r=1B(tr), and

∏
t∈T1

∏n
r=1

B(tr) is convex and compact. LetΦn :
∏

t∈T1

∏n
r=1B(tr) → ∏

t∈T1

∏n
r=1B(tr)

be a correspondence defined as in the proof of Theorem 1. Φn has nonempty,
convex values, and a closed graph, by the same argument of the proof of
Theorem 1. Moreover, let Φn∗ : B∗ → B∗ be a correspondence such that
Φn∗(b1) = Φn(b1) ∩ B∗, for each b1 ∈ B∗. For each b1 ∈ B∗ and for each
t ∈ T1, there exists b̄ ∈ B(t) such that b̄ ∈ Φn∗

tr (b), r = 1, . . . , n, as b1 is
an atom-type-symmetric strategy profile. Then, Φn∗ is nonempty. More-
over, Φn∗ has convex values as, for each b1 ∈ B∗, Φn∗(b1) = Φn(b1) ∩ B∗,
Φn(b1) is convex, and B∗ is convex. Finally, Φn∗ has a closed graph as it
is the intersection of the correspondence Φn and the continuous correspon-
dence which assigns, to each strategy selection b1 ∈ B∗, the compact set
B∗ which, by the Closed Graph Theorem, has a closed graph (see Theorem
17.25 in Aliprantis and Border (2006), p. 567). Therefore, by the Kakutani-
Fan-Glicksberg Theorem, there exists a fixed point b̂1 of Φn∗ which is an
atom-type-symmetric Cournot-Nash equilibrium of Γ1. Let b̂ be a strategy
selection of Γn such that b̂(t) = b̂10(t), for each t ∈ T . Hence, by the same
argument used in the proof of Theorem 1, b̂ is an atom-type-symmetric
Cournot-Nash equilibrium of Γn.

An atom-type-symmetric Cournot-Nash equilibrium b̂ of Γn is said to
be a Cobb-Douglas-atom-type-symmetric Cournot-Nash equilibrium of Γn

if b̂(t) = b0(t), for each t ∈ T0. The following Corollary is a straightforward
consequence of Theorem 3.

Corollary 3. Under Assumptions 1, 2, and 3, there exists a Cobb-Douglas-
atom-type-symmetric-Cournot-Nash equilibrium of Γn, b̂.

The following theorem shows that the sequences of Cournot-Nash equi-
librium allocations generated by the replication à la Cournot of E approxi-
mate a Walras equilibrium allocation of E .
Theorem 4. Under Assumptions 1, 2, and 3, let {b̂n} be a sequence of
strategy selections of Γ and let {p̂n} be a sequence of prices such that b̂n(t) =
b̂Γn

(tr), r = 1, . . . , n, for each t ∈ T1, b̂n(t) = b̂Γn
(t), for each t ∈ T0,∑l

i=1 p̂
in = 1, and p̂n = p(b̂Γn

), where b̂Γn
is a Cobb-Douglas-atom-type-

symmetric Cournot-Nash equilibrium of Γn, for n = 1, 2, . . .. Then, (i)
there exists a subsequence {b̂kn} of the sequence {b̂n}, a subsequence {p̂kn}
of the sequence {p̂n}, a strategy selection b̂ of Γ, and a price vector p̂,
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with p À 0, such that b̂(t) is the limit of the sequence {b̂kn(t)}, for each
t ∈ T , and the sequence {p̂kn} converges to p̂; (ii) x̂(t) is the limit of the
sequence {x̂kn(t)}, for each t ∈ T , where x̂(t) = x(t, b̂(t), p̂) for each t ∈ T ,
x̂kn(t) = x(t, b̂kn(t), p̂kn), for each t ∈ T , and for n = 1, 2, . . .; (iii) The pair
(p̂, x̂) is a Walras equilibrium of E .
Proof (i) Let {b̂n} be a sequence of strategy selections of Γ and let {p̂n}
be a sequence of prices such that b̂n(t) = b̂Γn

(tr), r = 1, . . . , n, for each
t ∈ T1, b̂

n(t) = b̂Γn
(t), for each t ∈ T0,

∑l
i=1 p̂

in = 1, and p̂n = p(b̂Γn
),

where b̂Γn
is a Cobb-Douglas-atom-type-symmetric Cournot-Nash equilib-

rium of Γn, for n = 1, 2, . . .. Let b̂1n denote the restriction of b̂n to T1,
for n = 1, 2, . . .. The fact the sequence {b̂1n(t)} belongs to the compact set
B(t), for each t ∈ T1, b̂

n(t) = b0(t), for each t ∈ T0, and the sequence {p̂n}
belongs to a compact set P , implies that there is a subsequence {b̂1kn(t)}
of the sequence {b̂1n(t)} which converges to an element b̂1(t) of the set
B(t), for each t ∈ T1, a subsequence {b̂kn(t)} of the sequence {b̂n(t)} which
converges to b0(t), for each t ∈ T0, and a subsequence {p̂kn} of the se-
quence {p̂n} which converges to an element p̂ of the set P . Let b̂(t) = b1(t),
for each t ∈ T1, and b̂(t) = b0(t), for each t ∈ T0. Then, by the same
argument used in the proof of Theorem 1, b̂ is a strategy selection of Γ

and ¯̂B is irreducible. Let b̂1 denote the restriction of b̂ to T1. The se-
quence

∫
T1

b̂1kn(t) dµ converges to
∫
T1

b̂1(t) dµ, by the Lebesgue Dominated
Convergence Theorem (see Aliprantis and Border (2006) p. 415), as the se-
quence {b̂1kn} converges to b̂1 and b̂1kn(t) ∈ B(t), for each t ∈ T1, and for
n = 1, 2, . . .. Then, the sequence {∫t∈T b̂kn(t) dµ} converges to

∫
T b̂(t) dµ

as
∫
t∈T b̂kn(t) dµ =

∫
t∈T1

b̂kn(t) dµ +
∫
t∈T0

b̂kn(t) dµ =
∫
t∈T1

b̂1kn(t) dµ +∫
t∈T0

b̂0(t) dµ, for n = 1, 2, . . ., the sequence
∫
T1

b̂1kn(t) dµ converges to∫
T1

b̂1(t) dµ, and
∫
T b̂(t) dµ =

∫
t∈T1

b̂1(t) dµ +
∫
t∈T0

b̂0(t) dµ. Therefore,

the sequence {B̂kn} converges to ¯̂B. Moreover, B̂Γn = B̂n as b̂Γn

ij =∑
t∈T1

∑n
r=1 b̂

Γn

ij (tr)µ(tr)+
∫
t∈T0

b̂Γn

ij (t) dµ =
∑

t∈T1
nb̂n

ij(t)
µ(t)
n +

∫
t∈T0

b̂n
ij(t)

dµ =
∑

t∈T1
b̂n
ij(t)µ(t)+

∫
t∈T0

b̂n
ij(t) dµ = b̂n

ij , i, j = 1, . . . , l, for n = 1, 2, . . ..

Then, p̂n = p(b̂n) as p̂n and b̂n satisfy (1), for n = 1, 2, . . .. But then, by
continuity, p̂ and b̂ must satisfy (1) as the sequence {p̂kn} converges to p̂

and the sequence {B̂kn} converges to ¯̂B. Therefore, Lemma 1 in Sahi and
Yao (1989) implies that p̂ À 0. (ii) Let x̂(t) = x(t, b̂(t), p̂), for each t ∈ T ,
x̂kn(t) = x(t, b̂kn(t), p̂kn), for each t ∈ T , and for n = 1, 2, . . .. Then, x̂(t)
is the limit of the sequence {x̂kn(t)}, for each t ∈ T , as b̂(t) is the limit
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of the sequence {b̂kn(t)}, for each t ∈ T , and the sequence {p̂kn} converges
to p̂. (iii) Consider the pair (p̂, x̂). It is straightforward to show that the
assignment x̂ is an allocation as p̂ and b̂ satisfy (1) and that x̂(t) ∈ ∆p̂(t),
for all t ∈ T . Suppose that (p̂, x̂) is not a Walras equilibrium of E . Then,
there exists a trader τ ∈ T and a commodity bundle x̄ ∈ ∆p̂(t) such that
uτ (x̄) > uτ (x̂(τ)). By Lemma 5 in Codognato and Ghosal (2000), there
exist λ̄j ≥ 0,

∑l
j=1 λ̄

j = 1, such that

x̄j = λ̄j

∑l
i=1 p̂

iwi(τ)

p̂j
, j = 1, . . . , l.

Let b̄ij = wi(τ)λ̄j , i, j = 1, . . . , l. Then, it is straightforward to verify that

x̄j = wj(τ)−
l∑

i=1

b̄ji +
l∑

i=1

b̄ij
p̂i

p̂j
,

for each j = 1, . . . , l. Consider first the case where τ ∈ T1. Let ρ denote

the k1-th element of the n-fold replication of E and let B̂Γkn \ b̄(τρ) denote
the aggregate matrix corresponding to the strategy selection b̂Γkn \ b̄(τρ),

where b̄(τρ) = b̄, for n = 1, 2, . . .. Let ∆B̂Γkn , ∆B̂Γkn \ b̄(τρ), and ∆B̂kn

denote the matrices of row sums of, respectively, B̂Γkn , B̂Γkn \ b̄(τρ), and

B̂kn , for n = 1, 2, . . .. Moreover, let qΓ
kn
, qΓ

kn

τρ , and qkn denote the vec-

tors of the cofactors of the first column of, respectively, ∆B̂Γkn − B̂Γkn ,

∆B̂Γkn \ b̄(τρ) − B̂Γkn \ b̄(τρ), and ∆B̂kn − B̂kn , for n = 1, 2, . . .. Clearly,

qΓ
kn

= qkn as B̂Γkn = B̂kn , for n = 1, 2, . . .. Let ∆
¯̂
B be the matrix of

row sums of
¯̂
B and q be the cofactors of the first column of ∆

¯̂
B − ¯̂

B. The

sequences {qΓkn} and {qkn} converge to q as the sequence B̂kn converges

to
¯̂
B and qΓ

kn
= qkn , for n = 1, 2, . . .. Let w̄ = max{w1(τ), . . . ,wl(τ)}.

Consider the matrix B̂Γkn − B̂Γkn \ b̄(τρ), for n = 1, 2, . . .. Then, b̂Γkn

ij −
b̂Γkn

ij \ b̄ij(τρ) = ( 1n b̂
Γkn

ij (τρ) − 1
n b̄ij(τρ)), i, j = 1, . . . , l, for n = 1, 2, . . ..

But then, the sequence of Euclidean distances {‖B̂Γkn − B̂Γkn \ b̄(τρ)‖}
converges to 0 as | 1n b̂Γkn

ij (τρ) − 1
n b̄ij(τρ)|= 1

n |b̂Γkn

ij (τρ) − b̄ij(τρ)| ≤ 1
n w̄,

i, j = 1, . . . , l, n = 1, 2, . . .. The sequence {B̂Γkn \ b̄(τρ)} converges to
¯̂
B as, by the triangle inequality, ‖B̂Γkn \ b̄(τρ)} − ¯̂

B‖ ≤ ‖B̂Γkn − B̂Γkn \
b̄(τρ)‖+‖B̂Γkn − ¯̂

B‖ = ‖B̂Γkn − B̂Γkn \ b̄(τρ)‖+‖B̂kn − ¯̂
B‖, for n = 1, 2, . . .,

and the sequences {‖B̂Γkn − B̂Γkn \ b̄(τρ)‖} and {‖B̂kn − ¯̂
B‖} converge to 0.
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Then, the sequence {qΓkn

τρ } converges to q. uτρ(x(τρ, b̂
Γkn

(τρ), p(b̂Γkn
))) ≥

uτρ(x(τρ, b̂
Γkn \ b̄(τρ), p(b̂Γkn \ b̄(τρ)))) as b̂Γkn

is a Cobb-Douglas-atom-
type-symmetric Cournot-Nash equilibrium of Γkn , for n = 1, 2, . . .. Let
b̂kn \ b̄(τ) be a strategy selection obtained by replacing b̂kn(τ) in b̂kn with b̄,

for n = 1, 2, . . .. Then, uτ (x(τ, b̂
kn(τ), qΓ

kn
)) ≥ uτ (x(τ, b̂

kn \ b̄(τ), qΓkn

τρ )) as

b̂kn(τ) = b̂Γkn
(τρ), p(b̂Γkn

) = βknq
Γkn

, with βkn > 0, by Lemma 2 in Sahi

and Yao (1989), b̂Γkn \b̄(τρ) = b̂kn\b̄(τ), and p(b̂Γkn \b̄(τρ)) = δknq
Γkn

τρ , with
δkn > 0, by Lemma 2 in Sahi and Yao (1989), for n = 1, 2, . . .. But then,
uτ (x̂(τ)) ≥ uτ (x̄), by Assumption 2, as the sequence {b̂kn(τ)} converges to

b̂(τ), the sequence {qΓkn} converges to q, the sequence {qΓkn

τρ } converges to
q, and p̂ = θq, with θ > 0, by Lemma 2 in Sahi and Yao (1989), a contra-
diction. Consider now the case where τ ∈ T0. We have that x̂(τ) ∈ Xp̂,
x̄ ∈ ∆p̂(τ), and uτ (x̄) > uτ (x̂(τ)), a contradiction
Hence, the pair (p̂, x̂) is a Walras equilibrium of E .

Given the equivalence result proved in Theorem 2, it is immediate to
verify that also a Cobb-Douglas-Cournot-Walras equilibrium of E converges,
in the sense of the statement of Theorem 4, to a Walras equilibrium of E .
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n. 2012-49, EconomiX, Université de Paris Ouest Nanterre la Défense.

[6] Codognato G., Gabszewicz J.J. (1993), “Cournot-Walras equilibria in
markets with a continuum of traders,” Economic Theory 3, 453-464.

17



[7] Codognato G., Ghosal S. (2000), “Cournot-Nash equilibria in limit ex-
change economies with complete markets and consistent prices,” Journal
of Mathematical Economics 34, 39-53.

[8] Cournot A. (1838), Recherches sur les principes mathématiques de la
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