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Abstract

We analyze the voting behavior of a small committee that has to approve or reject

a project proposal whose return is uncertain. Members have diverse preferences: some

of them want to maximize the expected value, while others have a bias towards project

approval and ignore their information on the project value. We focus on the most

efficient use of scarce information when members cannot communicate prior to voting,

and we provide insights on the optimal composition of the committee. Our main result

is that the presence of biased members can improve the voting outcome, by simplifying

the strategies of unbiased members. Thus, committees with diverse members perform

as well as homogeneous committees, and even better in some cases. In particular,

when value-maximizing members outnumber biased member by one vote, the optimal

equilibrium becomes unique.

Key words: Voting, Small committees, Committees composition.

JEL classification: D71, D72.

1 Introduction

In many committees, members are nominated by (and thus represent the interests of) different

institutions and this reflects in different voting behaviors. Consider, for instance, boards
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of directors whose objective, in principle, is to maximize firm value. Directors represent

different stakeholders, (majority and minority shareholders, investors, workers, etc.) whose

objectives may not be aligned. Another example1 is provided by monetary policy committees,

where some members are chosen within the staff of the central bank while other members

are appointed by external bodies, such as the Government (the Bank of England Monetary

Policy Committee is a typical example). In this case, internal members are usually more

concerned about inflation while external members are more concerned about unemployment.

In general, empirical studies show that members belonging to different groups have significant

differences in their voting behaviors and that these differences can be explained by factors

such as political pressure or the channel of appointment, especially when committee members

face retention decisions (see, for example, Sheperd [2009], and Harris, Levine and Spencer

[2011]).

The present paper analyzes the effect of member heterogeneity by studying the voting

behavior of a small committee that has to approve or reject a project. We consider two

types of players: expected value maximizers and biased members who always vote in favor of

the project, even disregarding their private information. Then, the following question arises:

why should biased members be allowed on this committee? Our model shows that their pres-

ence is beneficial in the absence of pre-voting communication because it ensures uniqueness

and optimality of the equilibrium strategy profile. The intuition is that the bias provides

certainty about some members’ strategies thus simplifying the responses of the others, and

therefore reducing the number of (otherwise) multiple equilibria. In particular, we explore

the behavior of uninformed value-maximizing members. Given that they want to maximize

the probability that the committee makes the correct decision, they face the question of how

to avoid influencing the decision and let informed members determine it. The equilibrium

voting strategies prescribe that uninformed unbiased members systematically contrast the

vote of biased members. Indeed, in many small committees dissent voting is commonly ob-

served (Spencer [2006]). On the basis of the equilibrium voting strategies, we determine the

optimal composition of the committee, consisting in letting unbiased members outnumber

biased members by just one vote. Our result is consistent with the actual composition of

some committees such as the Bank of England Monetary Policy Committee or the Italian

Constitutional Court.

The paper is organized as follows. Section 2 reviews the main literature. Section 3 presents

the basic model. Section 4 examines, as a benchmark, the voting game in a committee

composed only of value-maximizing members. Section 5 introduces biased members and

1Additional examples are special juries as Supreme or Constitutional Courts, and technical committees,
where politicians, bureaucrats and experts meet to provide advice.
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analyzes if and how results change when members have different objectives. Then, in Section

6 we discuss some assumptions of the model. Finally, Section 7 concludes. All proofs are

collected in the Appendix.

2 Related literature

Since Condorcet’s seminal contribution, namely his Jury Theorem, the literature about voting

has been constantly growing. A lot of papers have generalized the Jury Theorem2, and many

others have extended voting games to include both naive and strategic voting3.

Traditionally, in this literature the aim of voters has been to aggregate information, with

the assumption that taking the right decision (that is, guessing the correct state of the

world) was the common objective of all the players. In fact, we believe this is not the case,

as heterogeneity of preferences is well documented both in large and in small elections4.

Feddersen and Pesendorfer [1996; 1997] have focused on heterogeneity in large elections,

showing that full information aggregation is still possible. In particular, they show that the

probability of electing the “wrong” candidate asymptotically goes to zero.

Since the seminal contribution by Austen-Smith [1990], information sharing and voting

in small committees has been increasingly analyzed along with the possibility of commu-

nication5. Nonetheless, in small committees, the presence of preference heterogeneity and

(possible) resulting conflicts of interests appear to be a relevant problem, as information

sharing and aggregation may be severely limited by strategic behavior (see also Gerling et

al., 2005).

Thus, one possibility is to look for optimal voting rules to minimize information losses.

In a standard Condorcet Jury Theorem framework, Chwe [1999] suggests to provide minor-

ity members with optimal incentives to participate in voting, in order not to waste their

information. Things become more complicated when the relevant issue is not to find optimal

voting rules but, rather, an optimal way to aggregate “relevant” information6. Li, Rosen and

Suen [2001] examine a two-person committee where each member receives a private signal

and reports his information. Since members have conflicting interests, strategic considera-

2See, for instance, Duggan and Martinelli [2001], Myerson [1998] and McLennan [1998]. See also Piketty
[1999] for a brief review of recent contributions about the information-aggregation role of political institutions.

3See Austen-Smith and Banks [1996] and an experiment on the use of strategic voting by Eckel and Holt
[1989].

4See for instance Blinder [2006], Jung [2011], Riboni and Ruge-Murcia [2007] for the case on Monetary
Policy Committees.

5This strand of literature has been reviewed by Austen-Smith and Feddersen [2009]. See also Adams and
Ferreira [2007], Harris and Raviv [2008], and Raheja [2005] for communication in boards of directors.

6Berk and Bierut [2004] suggest that often in small committees it is technologically or politically unfeasible
to implement optimal voting rules, thus binding voting to be based on simple majority.
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tions induce information misreporting and there is no truth-telling equilibrium. Conflict of

interest prevents full information aggregation also in larger committees, as shown by Maug

and Yilmaz [2002]. These authors suggest to group voters into two separate classes because

such a voting mechanism may alleviate the incentive to withhold information when voters

have strong conflicts of interests and individual information differs. Thus, voting decisions

become more informative. Examining a committee of experts, Wolinsky [2002] suggests to

solve the problem in a similar way, by partitioning members in different groups7.

We take a different approach to the problem of information sharing among committee

members by examining how the voting outcome can be optimized when members do not

communicate. Without imposing any explicit revelation mechanism and without looking for

optimal voting rules or protocols, we suggest an optimal composition rule as a sufficient device

to provide the highest possible level of information aggregation, even when biased members

do not use their private information. The positive role of the latter in our model relies on

the fact that their presence on the committee eliminates multiple (and possibly suboptimal)

equilibria.

3 The model

A committee is composed of 2n + 1, n ≥ 1, members who have to decide by majority vote

whether to approve a project (voting “yes”) or reject it (voting “no”). If the proposal is

rejected, a value of 0 is realized. When accepted, the project yields value v = −1 if the state
of the world is low (L), and v = 1 if the state of the world is high (H). Thus, v : {−1, 1}.
Each state, and thus each value, has the same prior (i.e., 1

2
). This implies that when

members have no information on the state of the world, there is no one choice that dominates

the other. Given these probabilities, the highest expected value that can be achieved by

voting correctly (rejecting the project in L and approving it in H) is 1
2
. Note that a single

uninformed decision maker would always obtain an expected value of 0.

We consider a simple information structure where, before voting, any member of the

committee learns the true state with probability α ∈ [1
2
, 1) and learns nothing with probability

1 − α.8 As a consequence, the information set of a generic member i is Ωi = {ωi}, with
ωi ∈ {H;L}, when i is informed, while it is Ωi = {H,L}, when i does not know the true state
of the world. The probability of being informed is identically and independently distributed

7Committee members have heterogeneous preferences also in the model of Cai [2009]. The focus of Cai,
however, is the optimal size of the committee rather than its composition.

8Alternatively, we can assume that every member observes a signal that is perfectly informative with
probability α and is totally noisy with probability 1 − α. Referring to this interpretation, it can be shown
that our results would not qualitatively change if the signal was only partially noisy (Balduzzi [2005]).
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across members. Each member does not know who else is informed. Furthermore, we consider

the case in which committee members can become informed at no cost. As we point out at

the end of section 4, introducing a fixed cost for acquiring information may set an upper

bound to the optimal size of the committee.

We assume that members cannot communicate prior to voting, and as usual in the liter-

ature on committee voting, we do not consider abstention9. Both assumptions are discussed

in Section 6. Given that abstention is not allowed, the action set of each player has only two

elements: vote “yes” to accept the project, and “no” to reject it. A strategy si is a member

i’s voting behavior, conditional on his information set. A mixed strategy is defined as the

probability that a member votes “yes”.

The committee is composed of unbiased members who want to maximize the expected

value of the project, E(v), and of biased members who want to approve the project inde-

pendently of the state of the world. We assume that all members are risk neutral and that

their types are common knowledge. Let M denote value-maximizing members, and B mem-

bers with a bias. Then, we call m and b the probabilities of voting “yes” for an uninformed

member of type M and B respectively.

The utility function of an M type can be directly expressed in terms of the expected

value of the project: uM(E(v)) = E(v). Then, an M member will choose the strategy that

maximizes E(v). Notice that, given the values the project can take, maximizing E(v) is

equivalent to maximizing the probability that the committee takes the correct decision. In-

deed, the latter is equal to the sum of the probabilities that “yes” wins when the actual value

of the alternative is 1 and that “no” wins when the actual value of the alternative is −1:

1

2
{Y (· | v = 1) + [1− Y (· | v = −1)]} ,

where the function Y (·|·) is the conditional probability that the board as a whole votes “yes”.
The expected value of the project is:

E(v) =
1

2
[1Y (·|v = 1)− 1Y (·|v = −1)]

and it is straightforward to notice that the two expressions are strategically equivalent.

Given that a member can influence the outcome (and consequently his own utility) only

when he is pivotal, conditioning the vote on being pivotal is a weakly dominant strategy

for an M member who wants to maximize E(v). We concentrate only on equilibria where

9Of course we acknowledge some exceptions, such as Morton and Tyran (2008). Note also that in many
committees abstention is explicitly or implicitly ruled out (juries, the European Courts of Human Rights and
the Italian Constitutional Court are some examples).

5



the M members choose such strategies.10 The solution concept we use is Bayesian Nash

Equilibrium.

The utility function of a B member positively depends on the approval of the project.11

A B member always supports the project, regardless of the value which is ex post realized.

His utility uB, therefore, depends on the final decision of the committee, and can take the

following two values: uB = 1 if the project is approved, and uB = 0 if the project is rejected.

This clearly implies that always voting “yes” is a dominant strategy for a B member. For

simplicity, we abstract from additional problems, such as a B member’s potential loss of

reputation when the approval of the project creates a loss.

Finally, before analyzing the voting behavior of the committee, we introduce the definition

of compensating strategy that will be useful in the following sections.

Definition 1 (Compensating strategy) Two members are playing compensating strate-

gies when the following conditions are jointly satisfied: i) they are both uninformed; ii) they

play “yes” with probabilities whose sum is equal to 1. When these probabilities take extreme

values (0 and 1), compensation is in pure strategies.

Note that this definition describes strategies but does not require members to know who

is informed and who is not. Compensation is an ex ante concept. It may well happen that

one of the two individuals who compensate when uninformed is in fact informed, so that

compensation does not necessarily obtain ex post.

4 The benchmark

We define our benchmark as a committee only composed of members who want to maximize

E(v), i.e. members of type M. Clearly, whenever an M member is informed, he votes

according to his information. The issue is to define what an uninformed M member should

do. Intuitively, any uninformed member has an incentive to leave the final decision to the

others, who may be informed. It can then be shown that there are four types of equilibria

differing as to the behavior of uninformed members.

The first consists of an (asymmetric) equilibrium, where all but one member compensate

for each other in pure strategies when uninformed, while the remaining member plays any

strategy (when uninformed). Given that one of the members can actually play “yes” with

any probability, and that the identity of those members who vote “yes” and those who vote

10This rules out “uninteresting” equilibria where each member is never pivotal. For instance when every
member votes “yes” independently of his information. However it can be easily verified that all these equilibria
yield E(v) = 0.
11Obviously, nothing substantial in our results would change if a biased member always supported rejection.
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“no” (as well as that of the member who possibly uses a mixed strategy) is interchangeable,

there exists in fact a multiplicity of such equilibria all of which yield the same expected

value. Considering that members condition their strategies on being pivotal, no symmetric

equilibrium in pure strategies is possible12. The second consists of a (symmetric) unique

equilibrium where all the members compensate for each other in mixed strategies, voting

“yes” with probability 1/2. The third consists of an equilibrium where an even number of

uninformed members compensate for each other in pure strategies, while the remaining mem-

bers compensate in symmetric mixed strategies, voting “yes” with probability 1/2. Finally,

the last consists of an equilibrium where there are more members voting “yes” (“no”) than

members voting “no” (“yes”), while the others choose the same mixed strategy, voting “yes”

with probability lower (greater) than 1/2. Again there is a multiplicity of equilibria of the

third and fourth type because the identity of the players is interchangeable and because there

can be different numbers of players choosing mixed strategies.

In order to better understand the nature of the first type of equilibria, consider a simple

example with α = 1
2
and n = 2, so that there are five members Mi, i = 1, 2, 3, 4, 5. Suppose

that four members vote “yes” when uninformed. The remaining member knows that he

is pivotal only if two members vote “no”. But, given the above strategies, this happens

only if the two members who vote “no” are in fact informed. Then, the remaining member

should vote “no”. This tells us that (as members condition their strategies on being pivotal)

there cannot exist a symmetric equilibrium in pure strategies where everybody votes “yes”

(neither, by the same argument, an equilibrium where everybody votes “no”). Moreover,

it immediately appears that a situation where four members vote “yes” (or “no”), when

uninformed, cannot be an equilibrium: voting “yes” (“no”) is not the best response for an

uninformed individual when there are already three members following the “yes” (“no”)

strategy. His best response is to vote the opposite of another uninformed member, thus

giving rise to the asymmetric equilibrium. Once there are three members voting “yes” and

two members voting “no”, nobody has an incentive to change his strategy. Consider one of

those member voting “yes”. The probability that he is pivotal is the same in both states, so

he is indifferent between voting “yes” or “no”.

The expected value of these equilibria can be easily computed for α = 1/2. In the case

where two members vote “no” when uninformed, e.g. m1 = m2 = 0, and m3 = m4 = m5 = 1,

the expected value is

E(v)PS =
1

2
[Y (·|v = 1)− Y (·|v = −1)] = 1

2

[
1− 1

8

]
=
7

16
<
1

2

12On this point, see footnote 10.
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which is clearly equal to the value that obtains if three members vote “yes” when uninformed,

e.g. m1 = m2 = m3 = 0; and m4 = m5 = 1

E(v)PS =
1

2
[Y (·|v = 1)− Y (·|v = −1)] = 1

2

[
7

8
− 0
]
=
7

16
<
1

2
.

Moreover it can be easily checked that E(v) does not change even if there is one member

choosing a mixed strategy. For example when m1 = m2 = 0, m3 = m4 = 1 and m5 = 1/2

E(v)PS =
1

2
[Y (·|v = 1)− Y (·|v = −1)] =

1

2
[1− [1− Y (·|v = 1)]− Y (·|v = −1)] =

1

2

[
1− 2 1

16

]
=
7

16
<
1

2
.

Notice that, in the spirit of Condorcet, the expected value is bigger than the value ob-

tained by a single decision maker (0). Still, this committee cannot provide full information

(yielding E(v)FI = 1
2
) as it may collectively be uninformed. In other words, the committee

does not always make the correct decision. When all the members are uninformed, the de-

cision (whatever it is) is correct with probability 1/2. Moreover, the decision is wrong with

probability 1/2 if the only informed members are those voting according to the actual state

even if uninformed (those choosing mi = 1 if uninformed when the actual state is v = 1, or

those choosing mi = 0 if uninformed when the actual state is v = 0).

Consider now the second type of equilibrium where all the uninformed members com-

pensate for each other in (symmetric) mixed strategies. Intuitively, in this equilibrium any

member randomizes as long as he is pivotal in both states of the world with the same prob-

ability, given the other members’ strategies. But this is simultaneously true for any single

member, only if all the members are pivotal in each state of the world with the same prob-

ability. The only profile which is compatible with this logic is then the one where all the

members compensate for each other in mixed strategies, voting “yes” with probability 1/2.

This argument rules out any other possible equilibrium in mixed strategies: whenever a mem-

ber is not indifferent between voting “yes” or “no” (because the probability that he is pivotal

in a state is higher than the probability that he is pivotal in another state), he plays a pure

strategy. But then, other members will have an incentive to deviate from any mixed strategy

to compensate for his pure strategy. Again, we can easily compute the expected value for
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the five member case with m1 = m2 = m3 = m4 = m5 =
1
2
and α = 1

2
, obtaining

E(v)MS =
1

2
[Y (·|v = 1)− Y (·|v = −1)] =

1

2
[1− [Y (·|v = −1) + (1− Y (·|v = 1)]] =

1

2

[
1− 53

256

]
=
203

512
<
7

16

where [Y (·|v = −1) + (1− Y (·|v = 1)] is the probability of making the wrong decision. Thus,
the expected value falls short of that obtainable in the pure strategy equilibrium.

The third type of equilibrium looks like a combination of the previous two. In terms of

expected value, these equilibria perform better than the mixed strategy ones but worse than

equilibria with compensation in pure strategies. The expected value for the five member case

with m1 = 1,m2 = 0,m3 = m4 = m5 =
1
2
and α = 1

2
,is

E(v)MPS =
1

2
[Y (·|v = 1)− Y (·|v = −1)] =

1

2
[1− [Y (·|v = −1) + (1− Y (·|v = 1)]] . =

1

2
[1− .171874] = .414063; 203

512
< .414063 <

7

16

These mixed equilibria also dominate equilibria of the fourth type where there are more mem-

bers voting “yes” (“no”) than members voting “no” (“yes”), while the remaining members

choose the same mixed strategy, voting “yes” with probability lower (greater) than 1/2. An

example of the fourth type of equilibrium is found in the proof of the following Proposition,

which generalizes our findings.

Proposition 1 (Benchmark) In a voting game with 2n+ 1 members of type M, informed

members always play according to their information. There exist four types of equilibria

differing as to the behavior of uninformed members: i) multiple equilibria where n members

always vote “no”, n members always vote “yes”, and one member chooses m ∈ [0, 1]; ii) a

unique equilibrium in mixed strategies where 2n + 1 members randomize with probability 1
2
;

iii) multiple equilibria where 2n− 2k, k = 1, 2...n− 1, members compensate in pure strategies

and 2k + 1 members play mk = 1/2; iv) multiple equilibria where (n − k1) members choose

mj = 0 (mz = 1) and (n − k2) members choose mz = 1 (mj = 0) with k1 < k2 ≤ n while

all the others, k �= j, z, choose the same mixed strategy mk >
1
2
(mk <

1
2
). Equilibria of type

i) yield expected value E(v)∗ = 1
2
[1 − (1 − α)n+1]. All other equilibria yield a lower expected

value.
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The intuition for this result is the same as in the five-member case: uninformed members

do not want to influence the outcome of the voting process, so they compensate for each

other, and leave the final decision to possibly informed members. This is also what happens

in the second kind of equilibria where uninformed players compensate for each other in mixed

strategies. Compensation is more effective when played in pure strategies, as it is realized

with probability one: E(v) is higher in the equilibria where 2n agents compensate in pure

strategies than in the symmetric equilibrium in mixed strategies or in the equilibria where

only part of the members choose pure strategies while the others choose mixed strategies.

Then, in what follows we take the level of E(v)∗ as our benchmark.

Definition 2 Any equilibrium that yields E(v)∗ = 1
2
[1− (1− α)n+1] is defined optimal.

Notice that (1−α)n+1 is the probability that the decision is wrong, given by the probability
that all the members are uninformed, plus the probability that the only informed members

are those voting according to the actual state even if uninformed (those choosing mi = 1 if

uninformed when the actual state is v = 1, or those choosing mi = 0 if uninformed when the

actual state is v = −1).13
Just for illustration, we draw in Graph 1 and 2 the relationship between E(v) and the

probability of having informed members (α), in committees with five and nine members. In

both graphs, we compare the optimal equilibrium outcome (thin line) with the symmetric

mixed strategy equilibrium outcome (thick line).

Graph 1: E(v) and α in the five-member committee

0.5 0.6 0.7 0.8 0.9 1.0
0.40

0.42

0.44

0.46

0.48

0.50

Alpha

E(v)

13That (1−α)n+1 represents the probability of making the wrong decision is shown in the proof of Propo-
sition 1, point v).
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Graph 2: E(v) and α in the nine-member committee

0.5 0.6 0.7 0.8 0.9 1.0
0.40

0.42

0.44

0.46

0.48

0.50

Alpha

E(v)

The graphs show a positive relationship between E(v) and α in both equilibria. They also

show that the mixed strategy equilibrium never yields a higher expected value than the one

with compensation in pure strategies. When all the members are informed (α = 1), there is

no difference between the two equilibria and E(v) is the same. It is also clear that E(v) is

growing in n. These relations are formalized by Corollary 1 which immediately follows from

E(v)∗ = 1
2
[1− (1− α)n+1]

Corollary 1 When an optimal equilibrium is played, E(v)∗ is increasing both in n and in α

at a decreasing rate.

The positive relation between E(v)∗ and n recalls the central idea of the Jury Theorem.

The expected value grows with n because there is information aggregation (although im-

perfect, as we have seen in the five member case). In the present paper we do not address

the issue of the optimal committee size. We take the size as exogenous, as it is likely to be

determined on the ground of other criteria than the optimality of the voting behavior of the

committee.14 Moreover, the optimal size of the committee can be bounded by information

costs (e. g., see Persico, 2004). When information acquisition is costly, each member has an

incentive to acquire information only insofar as his benefit, which depends on the probability

of being pivotal, is not lower than his cost. As in our equilibrium the probability of being

pivotal decreases in size, this may set a limit to the optimal size of the committee.15

14For example, the need to represent different stakeolders or to balance different powers or just plain
political criteria.
15We do not develop this aspect in the present paper because it would distort the attention away from our

main focus. Costly information acquisition can be studied along the lines set in Persico (2004) who analyzes
the optimal voting rule (in terms of both incentives to acquire information and information aggregation) in
a similar setting. See also Harris and Raviv (2008) on the effects of costly information acquisition on the
optimal size of boards of directors.
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5 Heterogeneous preferences

Having determined the optimal equilibria, we compare this benchmark to the outcome of a

committee composed of members with heterogeneous preferences. Consider again a commit-

tee with five members (n = 2), in the case where α = 1
2
, but let now members be either

of type M or B. If B members hold the majority, the case is trivial because the committee

always approves the project and the M members are never pivotal. Then, we concentrate

on the remaining two interesting cases in which the committee is composed of : i) four

value-maximizing members Mi, i = 1, 2, 3, 4, and one biased member B5; and ii) three value-

maximizing members Mi, i = 1, 2, 3, and two biased members Bj, j = 4, 5.

We start from the latter case and we show that there exists a unique equilibrium. Given

that B members always vote “yes”, independently of their information, M members vote

according to their information whenever informed, and vote “no” when they are uninformed.

Such rejection is optimal, because the probability that an uninformed member is pivotal is

higher when the state of the world is L. In this case, we can easily compute:

E(v)M=B+1 =
1

2
[Y (·|v = 1)− Y (·|v = −1)] = 1

2

[
7

8
− 0
]
=
7

16

Quite surprisingly, the performance of this committee is the same as the optimal performance

of the committee composed of unbiased members only. In addition, this equilibrium is unique.

Thus, we can say that the heterogeneous committee ensures the optimal outcome, provided

that the M members outnumber B members by just one vote.

Consider now the case where the committee is composed of Mi, i = 1, 2, 3, 4, and B5.

Recall that the dominant strategy of an informed M member is to vote according to his

information, and that of the unique B member is to always approve the project. Then,

three types of equilibria emerge, differing as to the behavior of uninformed M members. In

the equilibria of the first type, two of the M members compensate for each other in pure

strategies when uninformed, and the other two M members vote “no”. In the equilibrium of

the second type, all of the fourM members play the same mixed strategy, when uninformed.

In the equilibria of the third type, one of the M members votes “no”, while the other three

M members play the same mixed strategy, when uninformed.

While the equilibrium of the first type is optimal, yielding expected value

E(v)PSM>B+1 =
1

2
[Y (·|v = 1)− Y (·|v = −1)] = 1

2

[
7

8
− 0
]
=
7

16

the equilibrium of the second type is suboptimal. We find in fact the following solution:
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m1 = m2 = m3 = m4 =
5−
√
13

6
, and

E(v)MSM>B+1 =
1

2
[Y (·|v = 1)− Y (·|v = −1)] = .384973 < 7

16

Intuitively, when the M members outnumber the B members by more than one, the former

have different choices. It may be the case that one single member offsets the bias of B5 in

pure strategies and the remaining members compensate for each other in pure strategies, or

that all of theM members play the same mixed strategy with the aim to collectively contrast

the bias of B5. This is the reason why the symmetric mixed strategy of the M members in

the second type of equilibrium is now biased towards rejection, mi < 1/2, i = 1, 2, 3, 4.

Moreover, another type of equilibrium is possible where the M members collectively

contrast the bias of B5: one biased member always votes “yes”, one uninformed unbiased

member plays a pure strategy (m1 = 0), and the remaining members, whenever uninformed,

play a symmetric mixed strategy (m2 = m3 = m4 =
1
3
). Such an equilibrium yields:

E(v)PMSM>B+1 =
1

2
[Y (·|v = 1)− Y (·|v = −1)] = .388889.

Hence:

E(v)MSM>B+1 < E(v)
PMS
M>B+1 < E(v)

PS
M>B+1.

With more than 5 members, there may arise additional equilibria, analogous to the fourth

type of equilibrium in Proposition 1. Such equilibria however are shown to be suboptimal in

Proposition 2, which generalizes our results.

Proposition 2 Consider a committee with 2n + 1 members where members of type B al-

ways approve the project and informed members of type M always vote according to their

information. We can distinguish two cases:

i) if there are n members of type B and n+ 1 members of type M the game has a unique

equilibrium in which all the members of type M always vote “no” when uninformed. This

unique equilibrium is optimal;

ii) if there are n− k members of type B (n > k > 0) and n+ 1 + k members of type M ,

the voting game may have multiple equilibria. There always exists optimal equilibria where 2k

members of type M compensate for each other in pure strategies and the remaining n− k+1
members of type M vote “no” when uninformed; other equilibria are suboptimal.

From the above proposition, Corollary 2 immediately follows.

Corollary 2 The expected value E(v)∗ is not increased by increasing the proportion of value-

maximizing members above
n+ 1

2n+ 1
.
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For a given size of the committee, increasing the proportion of the M members is not

profitable, provided they already hold the majority. By increasing the proportion of the

M members, optimal equilibria can still be obtained but there may also exist other kind of

equilibria. Thus, if value-maximizing members outnumber biased members by only one vote,

the situation is greatly simplified with respect to our benchmark case because the optimal

equilibrium is unique. Hence, we refer to this composition as optimal and to such a committee

as the optimal heterogeneous committee.

We know from Corollary 1 that increasing the size of the committee (increasing n), in-

creases E(v)∗, when the optimal equilibrium is played. Since an increase in n may now result

in an increase in the number of the B members, this point deserves some attention. Consider

the case with n members of type B and n+ 1 members of type M and recall that

E(v) =
1

2
[Y (·|v = 1)− Y (·|v = −1)].

The probability of approving the project when the state of nature is unfavorable, Y (·|v = −1),
is still equal to zero after an increase in n, because the effect of additional biased members

is compensated for by the additional M members voting “no” when uninformed. On the

contrary, the probability of approving the project when it is profitable, Y (·|v = 1), increases
with n, because it is equal to the probability that at least one of the n+ 1 members of type

M is informed. Hence adding new members (including biased ones) is profitable.16

6 Discussion

We have assumed that the members of the committee cannot abstain and cannot communi-

cate. We now briefly comment on these two assumptions.

Abstention

What happens if we relax our no-abstention assumption? First of all, note that allowing

abstention would bring some new issues and restrictions into the picture. For instance, it

should be arbitrarily stated what happens when everyone abstains, and an ad hoc rule (i.e.,

a probability to implement the project) should be applied. Moreover, it is unclear whether

to look at simple majority of members or simple majority of actual votes.

In general, however, abstention would improve the performance of a committee composed

only of unbiased members (our benchmark). With simple majority of actual votes, there

clearly is an equilibrium in which uninformed members abstain. Notice that any ad hoc

rule for the case in which all members abstain can induce such a behavior. In fact, if

16Clearly our comment on the optimal size of the committee following Corollary 1 still applies.
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at least one member is informed, the correct decision is made with certainty. In other

words, the wrong decision is made with probability 1
2
only when nobody is informed. If the

committee is composed of 2n+ 1 unbiased members, in this equilibrium the expected value

is E(v) = 1
2
[1− (1− α)2n+1] > E(v)∗.

Things are more complicated if there are k biased members, with 1 ≤ k < n. In this case,
k unbiased members should not abstain when uninformed but should vote “no” in order to

contrast the biased members’ votes17. Moreover, as it may occur that k unbiased members

vote “no”, while the other M members abstain, the tie-breaking rule should prescribe not to

implement the project so as to take care of the case where the only informed M members

are among those who (when uninformed) contrast the B members.

Notice however that the no-abstension assumption implies no loss of generality in the

case of our optimal heterogeneous committee (n + 1 unbiased members and n biased mem-

bers). Indeed, suppose abstention is allowed: biased members always vote “yes” and any

unbiased member still finds it optimal to condition his strategy on being pivotal. The reason

is the following. Suppose in a symmetric equilibrium all the other unbiased members ab-

stain when uninformed. If the remaining one is pivotal, this means that the other unbiased

members voted “no”, hence voting “no” is optimal. This is true for all unbiased members,

hence “abstention” is not an equilibrium strategy. This is true even in all other asymmetric

(putative) equilibria where some unbiased members vote “no” when uninformed and some

others abstain. The most extreme case obtains when all the other unbiased members vote

“no” when uninformed. Still, the probability that at least one of the other members voted

“no” because he is informed and the true state in −1 is higher than the probability that
they all voted “no” because they are uninformed (the only case where the remaining member

would be indifferent among voting “yes”, “no” or abstaining). Hence, voting “no” instead

of abstaining is optimal (formula and calculation are the same as the ones in the proof of

Proposition 2).

Communication

If we allow members to communicate prior to voting, unbiased members will certainly

communicate any information they possess because information aggregation among them

may improve the outcome. Indeed, it can be easily verified that perfect information aggre-

gation among M members is feasible. It suffices that a single M member is informed to

reach the correct decision. Coherently with the literature (see, e.g. Gerling et al., 2005),

communication can be introduced as a pre-voting stage where members of type M simulta-

neously send costless messages about their information sets. Recall that the information set

of a generic member i is Ωi = {ωi}, with ωi ∈ {H;L}, when i is informed, and Ωi = {H,L}
17For simplicity, we only consider pure strategies for the M members.
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when i is uninformed. Consider the case where member i can send a message σi ∈ {H,L, 0} ,
where σi = 0 means that i sends no information. Messages update M members’ information

sets.18 Moreover, assume that an informed member, whenever indifferent, sends a truth-

ful message. Then, equilibrium strategies prescribe that each informed M member sends

a truthful message and votes according to his information. Furthermore, each uninformed

M member receiving at least one σi = L votes according to the received message(s), and

indifferently votes either “yes” or “no” otherwise. This implies that in equilibrium full ag-

gregation of information amongM members is possible. As a result, it is optimal to increase

the number of unbiased members as much as possible, because the outcome now depends on

their (absolute) number and not on their proportion to biased members as in the optimal

committee of the no-communication case. If the committee is composed of 2n + 1 unbiased

members, the expected value becomes E(v) = 1
2
[1− (1− α)2n+1] because the wrong decision

is made with probability 1/2 only when nobody is informed, and this occurs with probability

(1− α)2n+1.
However, if we consider the optimal committee of the no communication case with n+ 1

members of type M and n members of type B, the introduction of communication cannot

improve on the outcome E(v)∗. In such a committee, the right decision is made with prob-

ability 1 when at least one out of the n + 1 M members is informed, and with probability
1
2
when no M member is informed. But this is precisely what happens in the case without

communication, and consequently the expected value of the project reaches the same level

E(v)∗ = 1
2
[1−(1−α)n+1]. Indeed, the voting strategies of theM members in the case with no

communication (contrasting biased members and leaving the decision to possibly informed

members) minimize the information required to reach the best possible outcome, E(v)∗.19

We can then conclude that, for a committee composition with n+1 members of typeM and

n members of type B, communication cannot improve the voting outcome.

18Alternatively we can assume that messages are exchanged among all the members and enter everybody’s
information set. Notice however that biased members cannot commit to send truthful messages because of
their strong bias. Thus, they would never be believed. This is equivalent to assuming that they do not send
any message, i.e. σB = 0. On the other hand members of type B, given their preferences, would not change
their strategies even if they received a message revealing that the state of nature is L. For these reasons we
focus on the message strategies of the M members.
19The introduction of communication results in the expansion of the set of equilibria. When no information

is revealed, M members now know that nobody is actually informed and thus have no strategic reason to
contrast biased members and make other unbiased members pivotal. They can indifferently cast any vote
and thus multiple equilibria arise: there now also exist equilibria where some unbiased members vote “no”
after observing σi = H. These additional equilibria may entail an unconvincing behavior on the part of the
M members, nonetheless they all yield E(v)∗ = 1

2
[1 − (1 − α)n+1]. Notice however that, contrary to what

happens in the type ii) equilibria of proposition 1, this multiplicity does not entail any coordination problem:
whatever the choice of the M members receiving message σi = H, an equilibrium with expected value E(v)

∗

is reached.
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7 Conclusions

We have analyzed the voting behavior of a small committee that has to approve or reject

a project whose return is uncertain. Members have heterogenous preferences: some mem-

bers want to maximize the expected value while others have a bias towards project approval

and disregard their private information. More precisely, we have shown that, in the ab-

sence of communication among members, heterogeneous committees can function at least as

well as committees with homogeneous value-maximizing members. In particular, when value

maximizers outnumber biased members by just one vote, the presence of biased members

can improve the voting outcome by simplifying the strategies of the value maximizers: the

equilibrium becomes unique and yields the optimal outcome. For a given committee size, in-

creasing the number of value-maximizing members above the minimum that ensures majority

does not increase the expected value and gives rise to additional suboptimal equilibria.

Despite being quite simple, we believe our framework can be easily applied to explain

voting behaviors in a number of different small decisional bodies such as monetary policy

committees, juries, boards of directors, and so on. In all of these committees, it is not

uncommon to observe dissent voting. We explain such dissent as the result of optimal voting

strategies, given an optimal composition rule of the committee itself. Furthermore, our

result shows that the composition actually used in some small committees (for instance, in

the Bank of England Monetary Policy Committee or the Italian Constitutional Court) is

optimal if members are diverse and communication is limited.

8 Appendix

8.1 Proof of Proposition 1

Recall that value-maximizing members choose their strategies conditioning on being pivotal.

Then, each informed member votes according to his information, as this maximizes the

probability of making the correct decision. Thus, in what follows we only focus on the voting

strategies of uninformed members.

Considering a committee composed of 2n + 1 members of type M , we prove that there

only exist i) multiple equilibria where 2n individuals compensate in pure strategies, ii) a

unique equilibrium where all members compensate in mixed strategies playingmj = 1/2, and

multiple equilibria where 2n− 2k, k = 1, 2...n− 1, individuals compensate in pure strategies
and 2k+1 individuals play mk = 1/2, iii) multiple equilibria where (n−k1) members choose
mj = 0 (mz = 1) and (n − k2) members choose mz = 1 (mj = 0) with k1 < k2 ≤ n while

all the others, k �= j, z, choose the same mixed strategy mk <
1
2
(mk >

1
2
). Finally, we prove
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that equilibria of type i) are optimal in that they maximize E(v).

i) There exist multiple equilibria where n members choose mj = 1, n members

choose mz = 0, and one member, denoted by Mi i �= j, z, chooses mi ∈ [0, 1]. There

cannot exist an equilibrium where more than n+1 members choose either mj = 1

or mz = 0.

We prove the existence of these equilibria in four steps. First we prove that player i is

voting optimally, given the strategies of the other 2n players; then we prove that the other

2n members are voting optimally as well (steps 2 and 3). Finally, we prove that these are

the only equilibria where at least n+ 1 members choose either mj = 1 or mz = 0.

1. If n members choose mj = 1, n members choose mz = 0, the best response of Mi, i �= j, z,
is to choose mi ∈ [0, 1] .
When n members are voting “yes” and n members are voting “no” Mi is pivotal in both

states of the world with the same probability. Indeed, when v = 1, Mi is pivotal when

everybody else is uninformed or when the only informed members are those n members who

would vote “yes” even if uninformed (thus not changing their votes whether informed or not).

As the former case (everybody is uninformed) can be considered as a sub case of the latter,

the probability that Mi is pivotal is

(1− α)n
[

n∑

j=0

n!

j!(n− j)!α
n−j(1− α)j

]

= (1− α)n.

where n!
j!(n−j)! represents the number of combination with n− j informed members among the

n members who vote “yes” if uninformed, and the term in brackets is equal to 1 from the

binomial theorem. When v = −1, Mi is pivotal when everybody else is uninformed or when

the only informed members are those who would vote “no” even if uninformed. Then the

probability thatMi is pivotal is again (1−α)n. Hence, Mi is indifferent between the possible

values of mi ∈ [0, 1] .
2. If n members choose mj = 1, n − 1 members choose mz = 0, and member Mi, i �= j, z,
chooses mi = 0 the best response of the remaining member (denoted by k, k �= i, j, z) is to

choose mk ∈ [0, 1] ; if Mi, chooses mi > 0 the best response of Mk is to choose mk = 0.

If Mi chooses mi = 0, we are back to point 1. So the optimal response of the remaining

Mk is mk ∈ [0, 1] . If instead Mi chooses mi = 1, then Mk is pivotal only when v = −1.
Consequently, Mk chooses mk = 0. But Mk chooses mk = 0 even if 1 > mi > 0 because Mk

is pivotal with a higher probability in v = −1 than in v = 1.
3. If n − 1 members choose mj = 1, n members choose mz = 0, and member Mi, i �= j, z,
chooses mi = 1 the best response of the remaining member (denoted by k, k �= i, j, z) is to

choose mk ∈ [0, 1] ; if Mi, chooses mi < 1 the best response of Mk is to choose mk = 1.
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The argument is symmetric to the one used at point 2.

Finally, note that any member can be in the position of Mi, or in that of an Mj voting

“yes”, or also in that of an Mz voting “no” or randomizing when uninformed. Thus, there is

a multiplicity of equilibria such as the one we are considering.

4. There cannot exist an equilibrium where more than n+ 1 members choose either mj = 1

or mz = 0.

Consider what happens if more than n + 1 members vote “yes”, i.e. suppose n + 1 + k

members (k ∈ {1, 2, 3, ..., n− 1}) choose mj = 1. Then every remaining member knows that

he is pivotal with a higher probability when v = −1. Hence, the remaining n − k members
choose mz = 0. However, this cannot be an equilibrium. Also members voting mj = 1 know

that they are pivotal with a higher probability when v = −1. Hence, as long as more than
n + 1 members still vote “yes” when uninformed (k �= 0), they have an incentive to change
their strategy and vote “no” when uninformed.

A symmetric argument can be used to analyze what happens if more than n+1 members

vote “no” when uninformed, i.e. if n+1+k members (k ∈ {1, 2, 3, ..., n− 1}) choose mz = 0

and consequently to rule out the existence of such equilibria.

ii) There exist multiple equilibria where n − k members choose mj = 1, n − k
members choose mz = 0, and 2k + 1 members choose mk = 1/2 for k = 1, 2..n − 1.
If 2k + 1 choose mk = 1/2 for k = 1, 2..n − 1 for an equilibrium to exist, members

choosing pure strategies must compensate each other. If 2(n − k) members

compensate in pure strategies, there cannot exist an equilibrium with at least

one member choosing mk �= 1/2. There exists a unique equilibrium where all the

2n+ 1 members play mixed strategies (k = n). Such an equilibrium is symmetric

with mk =
1
2
.

We prove the existence of these equilibria in three steps.

1. If n−k members choose mj = 1, n−k members choose mz = 0, and 2k members choose

mk = 1/2, k = 1, 2...n, the best response of the remaining member (denoted by i, i �= j, k, z)
is to choose mi =

1
2
.

Both when v = 1 and when v = −1, Mi is pivotal if a) everybody is uninformed and n

members vote “yes” while the other n members vote “no”, or b) no more than n members are

informed and vote accordingly, while uninformed members vote in such a way that results in

n members voting “yes” and n members voting “no”. Given that the other members either

compensate in pure strategies or choose mk =
1
2
, Mi is pivotal with the same probability in

both states of the world. Since both states are equally possible, Mi is then indifferent among

any mi ∈ [0, 1] .
This holds true for every member playing a mixed strategy. If nobody plays a pure
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strategy (k = n) it immediately follows that mk =
1
2
for j = 1, ...2n + 1, sustains an

equilibrium of the game.

2. If there are more members choosing mj = 1 (mz = 0) than members choosing mz = 0

(mj = 1), while the other members but one choose mk =
1
2
, the remaining member has a

pure strategy as his best response. If 2k + 1 members choose mk =
1
2
, the other members

must compensate each other in pure strategies.

If there are more members choosing mj = 1 (mz = 0) than members choosing mz = 0

(mj = 1) while all the others but member Mi, i �= j, z, k, choose mk =
1
2
, the best response

of Mi is to choose mi = 0 (mi = 1) because Mi is pivotal with a higher probability when

v = −1 (v = 1) than when v = 1 (v = −1).
From point 1. and 2., it follows that a situation where n − k members choose mj = 1,

n − k members choose mz = 0, and 2k + 1 members choose mk = 1/2, k = 1, 2..n − 1,
constitutes an equilibrium of the game. Moreover it follows from 2., that if 2k + 1 choose

mk = 1/2, k = 1, 2..n−1, for an equilibrium to exist, members choosing pure strategies must
compensate each other. Given that k can take values 1, 2..n − 1 and that any member can
be in the position of a j, a z or a k member, there exists a multiplicity of such equilibria.

3.There cannot exist either an equilibrium in mixed strategies with mk �= 1
2
for one or more

members or an equilibrium with at least one member choosing mk �= 1/2 when n−k members

choose mj = 1, n− k members choose mz = 0 for k = 1, 2...n− 1 and the other 2k members

choose mixed strategies.

If Mi were to choose mi >
1
2
(mi <

1
2
) while 2n − 1 members choose mk =

1
2
, the best

response of the remaining member denoted by j, j �= i, k, would be mj = 0 (mj = 1),

because Mj would be pivotal with a higher probability when v = −1 (v = 1) than when

v = 1 (v = −1). With 2n− 1 members choosing mk =
1
2
and Mj choosing mj = 0 (mj = 1),

however the best response of Mi becomes mi = 1 (mi = 0), because Mi would be pivotal

with a higher probability in v = 1 (v = −1) than in v = −1 (v = 1).
A similar argument holds true if member Mi, choosing mi >

1
2
, were compensated by

another member, denoted by h, choosing mh <
1
2
and such that mi +mh = 1. In this case

no other member has an incentive to deviate from mj =
1
2
, but it immediately appears that

mh <
1
2
is not a best response. Given that Mh is pivotal with a higher probability in v = −1

than in v = 1, his best response is mh = 0.

More generally, by applying the same line of reasoning, it can be verified that there cannot

exist an equilibrium with mi �= 1
2
for at least one i, because as soon as one or more agents

choose mi �= 1
2
, there is at least one agent (possibly one of those choosing mi �= 1

2
) who has

a pure strategy as his best response. Hence the only equilibrium in mixed strategies is the

one with mi =
1
2
for i = 1, 2...2n+ 1.
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Exactly the same argument can be applied in order to rule out equilibria where 2k + 1

members choose mixed strategies mk �= 1
2
, when there are 2(n− k) members, k = 1, 2..n− 1,

compensating each other in pure strategies.

iii) There may exist multiple equilibria where (n− k1) members choose mj = 0

(mz = 1) and (n− k2) members choose mz = 1 (mj = 0) with k1 < k2 ≤ n while all

the others, k �= j, z, choose the mixed strategy mk >
1
2
(mk <

1
2
).

We do not need to characterize all possible equilibria of this type. To our purpose, it is

sufficient to show that there may exist equilibria where some members use a mixed strategy

m ∈ (0, 1) and the other members choose pure strategies. More precisely, we build an

example for the case of n = 3 and k1 = 1 < k2 = 2. This is the smallest board where some

members may compensate in pure strategies, while another member chooses a pure strategy

and the rest choose mixed strategies (if n = 2 there could be an equilibrium with one member

choosing a pure strategy while the rest are choosing the same mixed strategy).

First of all by the argument used at point ii)1, for this to be an equilibrium, members

choosing mixed strategies must choose the same value of m. Hence, consider the case where

m1 = m2 = 0, m3 = 1, m4 = m5 = m6 = m7 = m. The value of m can be derived by

maximizing the function V (m) defined as follows for m ∈ [0, 1]

V (m) = E(v) =
1

2
[Y (·|v = 1)− Y (·|v = −1)] when

m1 = m2 = 0

m3 = 1

m4 = m5 = m6 = m7 = m.

Before showing that the solution to the maximization of V (m) identifies the equilibrium

mixed strategy, we show that such maximization has an interior solution. Given that (a) all

M players have identical payoffs equal to E(v) and (b) the game is symmetric with respect to

the M players, neither m = 0 nor m = 1 maximize V (m). To check this, suppose that V (m)

is maximized bym = 1 and considerM4. Givenm5 = m6 = m7 = m = 1, M4 is more likely to

be pivotal in v = −1 than in v = 1, then his best reply is notm4 = 1 but it ism4 = 0, because

with such a choice he can obtain the highest possible value of E(v). Since a player’s expected

payoff is linear in his own mixed strategy, we can then replacem4 = 1 withm
′
4 = 0+ε for any

ε ∈ (0, 1) and raise E(v). Given (a) and (b), this is true also for M5, M6 and M7. Since E(v)

is a polynomial in (m1,m2, ....m7), first-order effects dominate for sufficiently small ε > 0,

if m = 1 is replaced by m′ = 0 + ε in V (m) so that V (0 + ε) > V (1), contradicting that

V (m) is maximized by m = 1. An analogous argument rules out that V (m) is maximized by

m = 0. Since V (m) is continuos in m, there then exists a value m ∈ (0, 1) that maximizes
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V (m), and, considering that if it were m ≤ 1/2 the above argument (on possible increases of
E(v) by changing m) could be applied again, we can conclude that m > 1/2.

In order to show that m1 = m2 = 0, m3 = 1, m4 = m5 = m6 = m7 = m is actually an

equilibrium, consider first of all one of the members choosing m, e.g. M4. For this to be

an equilibrium, m must represent the best reply of M4. Suppose instead that M4 can raise

his payoff, E(v), by choosing m′
4 �= m and let m′

4 = m + ∆. Since a member’s payoff is

linear in his mixed strategy, we can replace m with m + ε∆ for any ε ∈ (0, 1) and so raise
E(v). Then the above argument can be repeated to show that for sufficiently low ε, it is

possible to replace m with m+ε∆ forM4, M5, M6, M7 and obtain V (m+ ε∆) > V (m), thus

contradicting that m maximizes V (m).

To check that also M1, M2, and M3 are choosing their best replies, consider one of the

members choosing mi = 0, e.g. M1. As m > 1/2, the probability that M1 is pivotal is higher

in v = −1 than in v = 1, consequently his best reply is to choose m1 = 0. The same clearly

holds for M2. Consider instead M3. Given m1 = m2 = 0 and the fact that m is calculated

by maximizing E(v) in a case where only one member is choosing m = 1, M3 is pivotal with

a higher probability in v = 1 than in v = −1. Consequently his best response is to actually
choose m3 = 1. Since any of the members can be in the position of M1, M2, M3, M4, M5,

M6, M7, there exist a multiplicity of such equilibria.

By solving this problem for α = 1
2
we find:

m4 = m5 = m6 = m7 = 0.656537;

E(v) = 0.448531

Clearly an analogous equilibrium can be constructed where m1 = m2 = 1, m3 = 0, m4 =

m5 = m6 = m7 = mk < 1/2.

iv) There cannot exist other equilibria than those considered at points i-iii).

From points i)-iii) it immediately follows that all possible combinations of strategies have

been considered.

v) The equilibria with compensation in pure strategies obtained at point i) max-

imize E(v)

In order to compare the expected value obtained in different equilibria, consider that E(v)

can be written as

E(v) =
1

2
[Y (·|v = 1)− Y (·|v = −1)]

=
1

2
[1− Y (·|v = −1)− (1− Y (·|v = 1)] .
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where Y (·|v = −1) + (1− Y (·|v = 1) is the probability of making the wrong decision.
Consider the equilibrium where every member plays the mixed strategy mk = 1/2. We

know from point ii)1. that when there are 2n members choosing mk = 1/2, the 2n + 1th

member, denoted by Mi, is in fact indifferent among any mi ∈ [0, 1] . This means that he
cannot raise E(v) by playing one instead of another strategy because as Y (·|v = −1) is
lowered (raised) by choosing a specific strategy, (1−Y (·|v = 1) is raised (lowered) by exactly
the same amount. Then the expected value is the same for any mi ∈ [0, 1] . This implies
that if Mi were to choose mi = 1, E(v) would stay at E(v)MS, even if this would not be

an equilibrium situation. Consider another member, denoted by Mh. From point ii)2 we

know that in such non equilibrium situation, his best response is to choose mh = 0, because

he is pivotal with a higher probability in v = −1 than in v = 1 and by choosing mh = 0,

he can raise E(v) above E(v)MS. We know from point ii) that the situation where Mi

chooses mi = 1, Mh chooses mh = 0 and all the other members choose mk = 1/2 constitutes

an equilibrium. Then, such an equilibrium yields E(v) > E(v)MS. The above argument,

however, can be applied again by singling out one of the members choosing mk = 1/2 who

is in fact indifferent among any m ∈ [0, 1], and letting him choose m = 1 (m = 0). The new

situation will not constitute an equilibrium but, there will again be another member who can

raise E(v) by choosing m = 0 (m = 1), and this new situation will constitute an equilibrium.

Clearly the argument can be recursively repeated to the point where an equilibrium in which

2n members compensate in pure strategies while the remaining member chooses mk ∈ [0, 1] ,
is reached. Consequently, an equilibrium with compensation in pure strategies yields a higher

E(v) than the equilibrium in mixed strategies, as well as than the equilibria with 2(n − k)
agents compensating in pure strategies and k + 1 agents choosing mk = 1/2.

Consider now the case where (n − k1) members choose mj = 0 and (n − k2) members
choose mz = 1 with k1 < k2 ≤ n, while all the others, k �= j, z, choose the mixed strategy
mk >

1
2
. In particular, consider the equilibrium characterized at point iii. The same argument

as above can be applied with slight modifications.

Consider M4 who is choosing the mixed strategy mk. M4 is in fact indifferent among any

m4 ∈ [0, 1] meaning that E(v) is not modified if he changes his strategy (provided that the
others do not change theirs). So let him switch to m4 = 1. E(v) is still 0.448531 but this is

no longer an equilibrium becausemk = 0.656537 was calculated so as to make any ofM4, M5,

M6, M7 indifferent amongmk ∈ [0, 1] when the four of them where playingmk, but now there

are only three of them choosing mk implying that each is pivotal with a higher probability

in v = −1 than in v = 1. Consider then M5. His best response is to choose m5 = 0, meaning

that, by doing so, he can raise E(v) above 0.448531. This is not an equilibrium, because

if m1 = m2 = m5 = 0 and m3 = m4 = 1 and m7 = mk, the best response of M6 is to
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choose m6 = 1 as he is pivotal with a higher probability in v = 1 than in v = −1. But this
means that, by doing so, M6 can further raise E(v). Moreover as now m1 = m2 = m5 = 0

and m3 = m4 = m6 = 1, an equilibrium with compensation in pure strategies has been

established.

This argument can clearly be generalized to any equilibrium where (n − k1) members
choose mj = 0 (mj = 1) and (n− k2) members choose mz = 1 (mz = 0) with k1 < k2 ≤ n,
while all the others, k �= j, z, choose the mixed strategy mk >

1
2
. It is sufficient to single

out one of the members choosing the mixed strategy and let him switch to a pure strategy.

Then, by having the the others successively switch to their best responses, the equilibrium

with compensation in pure strategies is reached as an improvement upon the starting point.

8.2 Proof of Corollary 1

The Corollary follows immediately considering that

∂[E(v)∗]

∂α
=
n+ 1

2
(1− α)n > 0, ∂[E(v)∗]2

∂α2
= −n(n+ 1)

2
(1− α)n−1;

and that the marginal expected value when n increases is

∆2n+1E(v)
PS ≡ 1

2
[1− (1− α)(n+1)+1]− 1

2
[1− (1− α)n+1] = α

2
(1− α)n+1

which is clearly decreasing in n.

8.3 Proof of Proposition 2

Recall that value-maximizing members choose their strategies conditioning on being pivotal.

Then, each informed M member votes according to his information, as this maximizes the

probability of making the correct decision. Thus, in what follows we only focus on the voting

strategies of uninformed members. The proof is organized as follows. We prove that:

i) if the committee is composed of n+1 value-maximizing members and n biased members,

there exists a unique equilibrium where each M member votes “no” when uninformed;

ii1) if the committee is composed of n + 1 + k value-maximizing members and n − k
biased members, there always exist equilibria where n − k value-maximizing members vote
“no” when uninformed and the remaining 2k value-maximizing members compensate for each

other in pure strategies.

ii2) if the committee is composed of n+1+k value-maximizing members and n−k biased
members (n > k > 0), there may exist equilibria where some or all the value-maximizing
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members play the same mixed strategy;

iii) the equilibria sub i) and sub ii1) are optimal while the equilibria sub i2 are suboptimal.

i) In a committee with n + 1 value-maximizing members and n biased members

there exists a unique equilibrium where all the M members vote “no” whenever

uninformed (that is, mi = 0; i = 1, 2, ..., n+ 1).

Consider member Mn+1. When v = 1, Mn+1 is pivotal only if all the other M members

are uninformed and vote “no”, which happens with probability:

(1− α)n
n∏

i=1

(1−mi)

When v = −1, Mn+1 is pivotal if:

- all the other M members are uninformed and vote “no”, which happens with probability

(1− α)n
n∏

i=1

(1−mi),

- all the other M members are informed, which happens with probability

αn,

- at least one (but not all) of the other M members is informed and the others vote “no”

when uninformed, which happens with probability

n∑

h=1

n!

h!(n− h)!α
n−h(1− α)h

h∏

i=1

(1−mi).

where n!
h!(n−h)! represents the number of combination with h uninformed value-maximizing

members and n− h informed value-maximizing members. It is straightforward that Mn+1 is

pivotal with a higher probability when v = −1. Hence Mn+1 chooses mn+1 = 0. As the same

reasoning holds for any other value-maximizing member i �= n + 1, it follows that every M
member will vote “no” when uninformed.

Finally, note that we have not restricted mi, i �= n + 1, to any particular value, so the

result also proves that this equilibrium is unique.

ii1) In the case of n−k biased members (n > k > 0) and n+1+k value-maximizing

members, there exist multiple equilibria with n−k+1 value-maximizing members

voting against the project and 2k value-maximizing members compensating for

each other in pure strategies.
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We prove the existence of these equilibria in three steps. In the first step, we prove that

when n − k value-maximizing members vote against the project and 2k value-maximizing
members compensate for each other, the remaining M member has still an incentive to vote

against the project; in the second step, we prove that when n−k value-maximizing members
vote against the project to contrast the n− k biased members, and a majority of the other
value-maximizing members also vote against the project, the remaining M member has an

incentive to compensate, voting “yes”. Finally, we show that there are no other equilibria in

pure strategies.

1. If n value-maximizing members choose mz = 0, and k value-maximizing members choose

mj = 1, the best response of Mi, i �= j, z, is to choose mi = 0.

When v = 1, Mi is pivotal if all the value-maximizing members are uninformed or if at least

one of those k value-maximizing members who choose mj = 1 when uninformed, is in fact

informed. Thus, Mi is pivotal with probability

(1− α)n
[

k∑

j=0

k!

j!(k − j)!α
k−j(1− α)j

]

= (1− α)n

where k!
j!(k−j)! represents the number of combination with j uninformed value-maximizing

members, k − j informed M members and the term in brackets is equal to 1 from the

binomial theorem. When v = −1, Mi is pivotal if all the M members are uninformed or if

at least one of those n value-maximizing members who choose mz = 0 when uninformed, is

in fact informed. Then Mi is pivotal with probability

(1− α)k
[

n∑

z=0

n!

z!(n− z)!α
n−z(1− α)z

]

= (1− α)k

Given that (1 − α)k > (1 − α)n, the probability that Mi is pivotal is higher when v = −1
than when v = 1. Hence Mi chooses mi = 0.

2. If n+ 1 value-maximizing members choose mz = 0 and k− 1 value-maximizing members

choose mj = 1, the best response of Mi, i �= j, z is to choose mi = 1

When v = 1, Mi is pivotal if only one of the n + 1 value-maximizing members choosing

mz = 0 is informed and votes “yes”. This happens with probability

(n+ 1)(1− α)nα.

On the contrary, Mi is never pivotal when v = −1. Hence, he chooses mi = 1.

Finally, note that anyM member can be in the position of Mi or in that of an Mj voting
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“yes”, or also in that of an Mz voting “no”. Thus, there is a multiplicity of equilibria such

as the one we are considering.

3. There cannot exist other equilibria in pure strategies than those characterized at points 1

and 2.

We must now consider what happens if either a) more than n value-maximizing members

vote “no” and the others vote “yes”, or b) more than k value-maximizing members vote “yes”

and the rest vote “no”.

a) If n − h value-maximizing members choose mz = 0, and k + h value-maximizing

members choose mj = 1, n ≥ h > 0, the best response of Mi, i �= j, z, is to choose mi = 0

becauseMi is never pivotal when v = 1 while he may be pivotal when v = −1. This happens in
the case where h of those n+h value-maximizing members who choosemj = 1 if uninformed,

are in fact informed. As this is true for any h > 0, we are back to the case examined at point

1 above.

b) If n + h value-maximizing members choose mz = 0, and k − h value-maximizing

members choose mj = 1, k ≥ h > 1, the best response of Mi, i �= j, z, is to choose mi = 1

becauseMi is never pivotal when v = −1 while he may be pivotal when v = 1. This happens in
the case where h of those n+h value-maximizing members who choosemz = 0 if uninformed,

are in fact informed. As this is true for any h > 1, we are back to the case examined at point

2 above.

ii2) In the case of n−k biased members (n > k > 0) and n+1+k value-maximizing

members, there may exist equilibria where some or all of the M members choose

the same mixed strategy.

In an equilibrium where all the M members choose the same mixed strategy, the value

of such strategy, m, can be derived by maximizing the function V (m) defined as follows for

m ∈ [0, 1]

V (m) = E(v) =
1

2
[Y (·|v = 1)− Y (·|v = −1)] when

mi = mj = m, ∀j �= i i, j = 1, 2....n+ k + 1
Bz always votes “yes” z = 1, ..n− k

Given that (a) all M players have identical payoffs equal to E(v), (b) the game is symmetric

with respect to the M players, and (c) the number of the M members exceeds that of the B

members by more than one, the same argument as in Proposition 1, point iii can be used to

prove that the maximization of V (m) has an interior solutionm < 1/2, and thatm represents

the best reply of theM members. Considering that any B member is following his dominant

strategy this then represents an equilibrium.
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We have solved this problem for the case of n = 2, with one member of type B (hence, B1

always votes “yes”) and the remaining four members of typeM. The solution of the problem,

evaluated at α = 1
2
, is:

m1 = m2 = m3 = m4 =
5−

√
13

6
,

yielding E(v) = .384973.

Analogously to the third and fourth case of proposition 1, there may also exist equilibria in

which some of theM members choosemj = 0, and the others choose the same mixed strategy,

or even equilibria where part of theM members choose mz = 1.We do not characterize such

equilibria but we show at point iii) that, whenever they exist, they are suboptimal.

iii) The equilibria in pure strategies are optimal, other equilibria are suboptimal

Recall that

E(v) =
1

2
[Y (·|v = 1)− Y (·|v = −1)]

=
1

2
[1− Y (·|v = −1)− (1− Y (·|v = 1)] .

where Y (·|v = −1) + (1− Y (·|v = 1) is the probability of making the wrong decision.
In the unique equilibrium of the case with n biased members and n+1 value-maximizing

members (point i), as well as in the pure strategy equilibrium of the case with n− k biased
members (n > k > 0) and n+ 1+ k value-maximizing members (point ii1), Y (·|v = −1) = 0
and Y (·|v = 1) is equal to the probability that at least one of the n+1 members who choose
mi = 0 is informed. Then in both cases E(v) is equal to

1

2

n∑

i=0

(n+ 1)!

i!(n+ 1− i)!α
n+1−i(1− α)i = 1

2

[
1− (1− α)n+1

]
= E(v)∗ (2)

implying that these equilibria are optimal.

In order to prove that the equilibria where unbiased members choose mixed strategies

are suboptimal, an analogous argument to the one used in point v) of Proposition 1 can be

applied. Consider the equilibrium introduced as an example at point ii)2 above. Each the

M members, individually taken, is in fact indifferent among any mi ∈ [0, 1]. Let M1 switch

to m1 = 0. E(v) is not modified but this is no longer an equilibrium because mj =
5−
√
13

6

was calculated so as to make unbiased members playing mixed strategies indifferent among

mj ∈ [0, 1] when there were four of them, while now there are only threeM members playing

mj =
5−
√
13

6
. This implies that one of the members who are still choosing mj <

1
2
, say M2,

has as his best response m2 = 1 because he is now pivotal with a higher probability in v = 1

than in v = −1. This in turn implies that, by switching to m2 = 1 , he can raise E(v) above
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.384973. The resulting situation will not be an equilibrium (as mj is unaltered for those

who still play the mixed strategy, the probability that one of them is pivotal is higher in

v = −1 than in v = 1) meaning that there is another member, say M3 who can further raise

E(v) by switching to m3 = 0. Since now there is a B1 always voting “yes”, M1 and M3

choosing m1 = m3 = 0 and M2 choosing m2 = 1, we know from point ii)11 that the best

response of M4 is to choose m4 = 0. But, by doing so, M4 further raises E(v) while reaching

an equilibrium of type ii)2.

Clearly the same procedure applies to any equilibrium where the M members adopt the

same mixed strategy, independently of the size of the board, and of the proportion to the

B members. It also applies to possible equilibria in which some of the M members choose

mj = 0, and the others choose the same mixed strategy, or to equilibria where part of the M

members choose mz = 1. First of all observe that for such an equilibrium to be established

it must be at least n = 2 and that the agents adopting a mixed strategy must choose the

same mk. Moreover there must be at least three agents choosing the mixed strategy. It is

immediate to verify that there cannot be only two of them, because if there is at least one

M member choosing a pure strategy and only oneM member choosing a mixed strategy, the

best response of the remaining member is a pure strategy. Whenever there are more than

one agent using the same mixed strategy, however, we can consider the situation where one

of these agents switches from his mixed equilibrium strategy to a pure one. This would not

represent an equilibrium and E(v) could be improved by having another agent moving to

his best response. By applying this method recursively the equilibria in pure strategies are

reached.
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