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Abstract

Following Sethuraman, Teo and Vohra ((2003), (2006)), we ap-
ply integer programming tools to the analysis of fundamental issues
in social choice theory. We generalize Sethuraman et al.’s approach
specifying integer programs in which variables are allowed to assume
values in the set {0, 1

2 , 1}. We show that there exists a one-to-one corre-
spondence between the solutions of an integer program defined on this
set and the set of the Arrovian social welfare functions with ties (i.e.
admitting indifference in the range). We use our generalized integer
programs to analyze nondictatorial Arrovian social welfare functions,
in the line opened by Kalai and Muller (1977). Our main theorem
provides a complete characterization of the domains admitting non-
dictatorial Arrovian social welfare functions with ties by introducing a
notion of strict decomposability.
Journal of Economic Literature Classification Number: D71.

1 Introduction

In two pathbreaking papers, Sethuraman, Teo, and Vohra ((2003), (2006))
introduced the systematic use of integer programming in the traditional field
of social choice theory, initiated by Arrow (1963). As remarked by these
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authors, integer programming is a powerful analytical tool, which makes
it possible to derive, in a systematic and simple way, many of the already
known theorems on Arrovian Social Welfare Functions (ASWFs) - that is
those social welfare functions satisfying the hypotheses of Pareto optimality
and independence of irrelevant alternatives - and to prove new results.

In particular, they developed Integer Programs (IPs) in which variables
assume values only in the set {0, 1}. Binary IPs of this kind are suitable
to be used as an auxiliary tool to represent the so-called ASWFs “without
ties,” that is ASWFs which do not admit indifference between distinct al-
ternatives in their range. Indeed, a fundamental theorem in Sethuraman
et al. (2003) establishes a one-to-one correspondence, on domains of an-
tisymmetric preference orderings, between the set of feasible solutions of
their main binary IP and the set of ASWFs without ties. In both papers
mentioned above, Sethuraman et al. used binary integer programming to
analyze, among other issues, neutral and anonymous ASWFs. Moreover, in
the 2003 paper, they opened the way to a reconsideration, in terms of inte-
ger programming, of the work by Kalai and Muller (1977) on nondictatorial
ASWFs.

Arrow (1963) established his celebrated impossibility theorem for ASWFs
defined on the unrestricted domain of preference orderings. As is well known,
this result holds also for ASWFs defined on the domain of all antisymmetric
preference orderings. Kalai and Muller (1977) dealt with the problem of
introducing restrictions on this latter domain of individual preferences in
order to overcome Arrow’s impossibility result.1 They gave the first com-
plete characterization of the domains of antisymmetric preference orderings
which admit nondictatorial ASWFs without ties. They did this by means of
two theorems. In their Theorem 1, they showed that there exists a n-person
nondictatorial ASWF for a given domain of antisymmetric preference or-
derings if and only if there exists a 2-person nondictatorial ASWF for the
same domain. In their Theorem 2, they gave the domain characterization,
by introducing the concept of decomposability.

Sethuraman et al. (2003) provided a simplified version of Kalai and
Muller’s Theorem 1 by using a binary IP.

In this paper, we proceed along the way opened by Sethuraman et al. We
provide a natural generalization of their approach, specifying IPs in which
variables are allowed to assume values in the set {0, 12 , 1}. These programs -
which we will call “ternary IPs,” with some abuse with respect to the current

1Maskin (1979) independently investigated the same issue.

2



specialized literature 2 - are suitable to be used to represent ASWFs “with
ties” - that is ASWFs which admit indifference between distinct alternatives
in their range. Indeed, we provide a theorem establishing that there exists a
one-to-one correspondence between the set of feasible solutions of a ternary
IP and the set of ASWFs with ties.

We use our generalized integer programs to systematically study nondic-
tatorial ASWFs. We first show how these tools can be used to obtain a new
and simpler proof of Kalai and Muller’s Theorem 2 for ASWFs without ties.
To this end, we introduce a simpler but equivalent version of the concept of
decomposability proposed by these authors. More important, this analysis
is the basis for going beyond the already known results on nondictatorial
ASWFs.

In fact, Kalai and Muller’s Theorem 2 provides a complete characteriza-
tion both of the domains of antisymmetric preference orderings admitting
nondictatorial ASWFs without ties and those admitting dictatorial ASWFs
without ties. The problem of characterizing the domains of antisymmetric
preference orderings admitting nondictatorial ASWFs with ties has so far
been left open. We overcome this problem by using ternary integer pro-
gramming: in our main theorem, we provide a complete characterization of
these domains by introducing the notion of strict decomposability.

This new characterization result raises the question of which is the re-
lationship between decomposable and strictly decomposable domains. We
conclude our analysis showing that all strictly decomposable domains are
decomposable whereas the converse relation does not hold.

2 Notation and definitions

Let E be any initial finite subset of the natural numbers with at least
two elements and let |E| be the cardinality of E, denoted by n. Elements of
E are called agents.

Let E be the collection of all subsets of E. Given a set S ∈ E , let
Sc = E \ S.

Let A be a set such that |A| ≥ 3. Elements of A are called alternatives.
Let A2 denote the set of all ordered pairs of alternatives.

2We have to stress that we still apply the basic tools of integer linear programming
and that the programs we introduce could be equivalently defined on the set {0, 1, 2}.
Nonetheless, here we prefer to follow Sethuraman et al. (2006), and keep using the value
1
2
in order to incorporate indifference between social alternatives into the analysis.
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Let R be the set of all the complete and transitive binary relations on
A, called preference orderings.

Let Σ be the set of all antisymmetric preference orderings.
Let Ω denote a nonempty subset of Σ. An element of Ω is called admis-

sible preference ordering and is denoted by p. We write xpy if x is ranked
above y under p.

A pair (x, y) ∈ A2 is called trivial if there are not p,q ∈ Ω such that xpy
and yqx. Let TR denote the set of trivial pairs. We adopt the convention
that all pairs (x, x) ∈ A2 are trivial.

A pair (x, y) ∈ A2 is nontrivial if it is not trivial. Let NTR denote the
set of nontrivial pairs.

Let Ωn denote the n-fold Cartesian product of Ω. An element of Ωn is
called a preference profile and is denoted by P = (p1,p2, . . . ,pn), where pi

is the antisymmetric preference ordering of agent i ∈ E.
A Social Welfare Function (SWF) on Ω is a function f : Ωn → R.
f is said to be “without ties” if f(Ωn) ∩ (R \ Σ) = ∅.
f is said to be “with ties” if f(Ωn) ∩ (R \ Σ) 6= ∅.
Given P ∈ Ωn, let P (f(P)) and I(f(P)) be binary relations on A. We

write xP (f(P))y if, for x, y ∈ A, xf(P)y but not yf(P)x and xI(f(P))y if,
for x, y ∈ A, xf(P)y and yf(P)x.

A SWF on Ω, f , satisfies Pareto Optimality (PO) if, for all (x, y) ∈ A2

and for all P ∈ Ωn, xpiy, for all i ∈ E, implies xP (f(P))y.
A SWF on Ω, f , satisfies Independence of Irrelevant Alternatives (IIA)

if, for all (x, y) ∈ NTR and for all P,P′ ∈ Ωn, xpiy if and only if xp′
iy, for

all i ∈ E, implies, xf(P)y if and only if xf(P′)y, and, yf(P)x if and only if
yf(P′)x.

An Arrovian Social Welfare Function (ASWF) on Ω is a SWF on Ω, f ,
which satisfies PO and IIA.

An ASWF on Ω, f , is dictatorial if there exists j ∈ E such that, for all
(x, y) ∈ NTR and for all P ∈ Ωn, xpjy implies xP (f(P))y. f is nondicta-
torial if it is not dictatorial.

Given (x, y) ∈ A2 and S ∈ E , let dS(x, y) denote a variable such that
dS(x, y) ∈ {0, 12 , 1}.

An Integer Program (IP) on Ω consists of a set of linear constraints,
related to the preference orderings in Ω, on variables dS(x, y), for all (x, y) ∈
NTR and for all S ∈ E , and of the further conventional constraints that
dE(x, y) = 1 and d∅(y, x) = 0, for all (x, y) ∈ TR.

Let d denote a feasible solution (henceforth, for simplicity, only “solu-
tion”) to an IP on Ω. d is said to be a binary solution if variables dS(x, y)
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reduce to assume values in the set {0, 1}, for all (x, y) ∈ NTR, and for all
S ∈ E . It is said to be a “ternary” solution, otherwise.

A solution d is dictatorial if there exists j ∈ E such that dS(x, y) = 1,
for all (x, y) ∈ NTR and for all S ∈ E , with j ∈ S. d is nondictatorial if it
is not dictatorial.

An ASWF on Ω, f , and a solution to an IP on the same Ω, d, are said
to correspond if, for each (x, y) ∈ NTR and for each S ∈ E , xP (f(P))y if
and only if dS(x, y) = 1, xI(f(P))y if and only if dS(x, y) =

1
2 , yP (f(P))x

if and only if dS(x, y) = 0, for all P ∈ Ωn such that xpiy, for all i ∈ S, and
ypix, for all i ∈ Sc.

Finally, consider the following condition of decomposability, introduced
by Kalai and Muller (1977) to characterize the domains of antisymmetric
preference orderings admitting nondictatorial ASWFs without ties.

Ω is said to be decomposable (henceforth, KM decomposable) if there
exists a set R, with TR $ R $ A2, satisfying the following conditions.

Condition I. For every two pairs (x, y), (x, z) ∈ NTR, if there exist p,q ∈ Ω
for which xpypz and yqzqx, then (x, y) ∈ R implies that (x, z) ∈ R.

Condition II. For every two pairs (x, y), (x, z) ∈ NTR, if there exist p,q ∈ Ω
for which xpypz and yqzqx, then (z, x) ∈ R implies that (y, x) ∈ R.

Condition III. For every two pairs (x, y), (x, z) ∈ NTR, if there exists p ∈ Ω
for which xpypz, then (x, y) ∈ R and (y, z) ∈ R imply that (x, z) ∈ R.

Condition IV. For every two pairs (x, y), (x, z) ∈ NTR, if there exists p ∈ Ω
for which xpypz, then (z, x) ∈ R implies that (y, x) ∈ R or (z, y) ∈ R.

3 Binary integer programming and Arrovian so-
cial welfare functions without ties: the work of
Sethuraman, Teo and Vohra

The first formulation of an IP on Ω was proposed by Sethuraman et al.
(2003), for the case where dS(x, y) ∈ {0, 1}, for all (x, y) ∈ NTR and for all
S ∈ E . This binary IP - which we will call IP0 - consists of the following set
of constraints:

dE(x, y) = 1, (i)
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for all (x, y) ∈ NTR;
dS(x, y) + dSc(y, x) = 1, (ii)

for all (x, y) ∈ NTR and for all S ∈ E ;

dA∪U∪V (x, y) + dB∪U∪W (y, z) + dC∪V ∪W (z, x) ≤ 2, (iii)

for all triples of alternatives x, y, z and for all disjoint and possibly empty
sets A,B,C,U, V,W ∈ E whose union includes all agents and which satisfy
the following conditions (hereafter referred to as Conditions (∗)):

A 6= ∅ only if there exists p ∈ Ω such that xpzpy,

B 6= ∅ only if there exists p ∈ Ω such that ypxpz,

C 6= ∅ only if there exists p ∈ Ω such that zpypx,

U 6= ∅ only if there exists p ∈ Ω such that xpypz,

V 6= ∅ only if there exists p ∈ Ω such that zpxpy,

W 6= ∅ only if there exists p ∈ Ω such that ypzpx.

By introducing integer programming, Sethuraman et al. (2003) were able
to provide a new representation of ASWFs with respect to the axiomatic
one previously used in the Arrow’s tradition. In particular, in the 2003
paper, they showed that there exists a one-to-one correspondence between
the set of the solutions to IP0 on Ω and the set of the ASWFs without ties
on the same Ω. Moreover, in both their 2003 and 2006 papers, they used
IP0 to systematically analyze properties of ASWFs such as neutrality and
anonymity.

Sethuraman et al. (2003) also built up a second binary IP on Ω, for many
respects related to Kalai and Muller’s work on nondictatorial ASWFs. In
this IP - which we will call IP0′ - constraint (iii) is replaced by the following
set of constraints:

dS(x, y) ≤ dS(x, z), (iv)

dS(z, x) ≤ dS(y, x), (v)

for all triples x, y, z such that there exist p,q ∈ Ω satisfying xpypz and
yqzqx, and for all S ∈ E ;

dS(x, y) + dS(y, z) ≤ 1 + dS(x, z), (vi)

dS(z, y) + dS(y, x) ≥ dS(z, x), (vii)

6



for all triples x, y, z such that there exists p ∈ Ω satisfying xpypz, and for
all S ∈ E .

Constraints (iv) and (v) translate, in terms of variables dS(x, y), Kalai
and Muller’s Conditions I and II. In their Claim 1, these authors showed that
these constraints are special cases of (iii). Constraints (vi) and (vii) translate
Kalai and Muller’s Conditions III and IV. In their Claim 2, Sethuraman et
al. (2003) showed that also these constraints are special cases of (iii). Their
analysis established that any solution d to IP0 on Ω is a solution to IP0′ on
the same domain and that IP0 and IP0′ are equivalent in the case where
n = 2.

In the remainder of this section, we will prove that the set of constraints
(iv)-(vii) exhibits problems of logical dependence. More precisely, the follow-
ing proposition shows that one of the constraints (iv) and (v) is redundant.

Proposition 1. d satisfies (i), (ii), and (iv) if and only if it satisfies (i), (ii),
and (v).

Proof. Suppose that d satisfies (i), (ii), and (iv). Consider a triple x, y, z.
Suppose that there exist p,q ∈ Ω satisfying xpypz and yqzqx, and that

dS(z, x) > dS(y, x),

for some S ∈ E . Then, dS(z, x) = 1, dS(y, x) = 0. But then, dSc(x, z) = 0,
dSc(x, y) = 1. This implies that

dSc(x, y) > dSc(x, z),

contradicting (iv). Therefore, d satisfies (i), (ii), and (v). Suppose that d
satisfies (i), (ii), and (v). Consider a triple x, y, z. Suppose that there exist
p,q ∈ Ω satisfying xpypz and yqzqx, and that

dS(x, y) > dS(x, z),

for some S ∈ E . Then, dS(x, y) = 1, dS(x, z) = 0. But then, dSc(y, x) = 0,
dSc(z, x) = 1. This implies that

dSc(z, x) > dSc(y, x),

contradicting (v). Therefore, d satisfies (i), (ii), and (iv).

Moreover, the following proposition shows that one of the constraints
(vi) and (vii) is redundant.
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Proposition 2. d satisfies (i), (ii), and (vi) if and only if it satisfies (i), (ii),
and (vii).

Proof. Suppose that d satisfies (i), (ii), and (vi). Consider a triple x, y, z.
Suppose that there exists p ∈ Ω satisfying xpypz, and that

dS(z, y) + dS(y, x) < dS(z, x),

for some S ∈ E . Thus, dS(z, y) = 0, dS(y, x) = 0, and dS(z, x) = 1. But
then, dSc(y, z) = 1, dSc(x, y) = 1, and dSc(x, z) = 0. This implies that

dSc(x, y) + dSc(y, z) > 1 + dSc(x, z),

contradicting (vi). Therefore, d satisfies (i), (ii), and (vii). Suppose that
d satisfies (i), (ii), and (vii). Consider a triple x, y, z. Suppose that there
exists p ∈ Ω satisfying xpypz, and that

dS(x, y) + dS(y, z) > 1 + dS(x, z),

for some S ∈ E . Then, dS(x, y) = 1, dS(y, z) = 1, and dS(x, z) = 0. But
then, dSc(y, x) = 0, dSc(z, y) = 0, and dSc(z, x) = 1. This implies that

dSc(z, y) + dSc(y, x) < dSc(z, x),

contradicting (vii). Therefore, d satisfies (i), (ii), and (vi).

We will use Propositions 1 and 2 in the next section. There, we will
provide a natural generalization of Sethuraman et al.’s approach, specifying
two integer programs in which variables dS(x, y) are allowed to assume values
in the set {0, 12 , 1}.

4 Ternary integer programming and Arrovian so-
cial welfare functions with ties: a correspon-
dence theorem

In this section, we first introduce a generalization of Sethuraman et al.’s IP0
to the case where dS(x, y) =

1
2 , for some (x, y) ∈ NTR and for some S ∈ E .

We will show that this ternary program on Ω - which we will call IP1 - can
be used to represent ASWFs with ties. IP1 consists of the following set of
constraints:

dE(x, y) = 1, (1)
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for all (x, y) ∈ NTR;
dS(x, y) + dSc(y, x) = 1, (2)

for all (x, y) ∈ NTR and for all S ∈ E ;

dA∪U∪V (x, y) + dB∪U∪W (y, z) + dC∪V ∪W (z, x) ≤ 2, (3)

if dA∪U∪V (x, y), dB∪U∪W (y, z), dC∪V ∪W (z, x) ∈ {0, 1};

dA∪U∪V (x, y) + dB∪U∪W (y, z) + dC∪V ∪W (z, x) =
3

2
, (4)

if dA∪U∪V (x, y) = 1
2 or dB∪U∪W (y, z) = 1

2 or dC∪V ∪W (z, x) = 1
2 , for all

triples of alternatives x, y, z and for all disjoint and possibly empty sets
A,B,C,U, V,W ∈ E whose union includes all agents and which satisfy Con-
ditions (∗).

In fact, we propose now a result which establishes a one-to-one corre-
spondence between the set of the solutions to IP1 on a given Ω and the set
of the ASWFs with ties on the same Ω.

Theorem 1. Consider a domain Ω. Given an ASWF on Ω, f , there exists
a unique solution to IP1 on Ω, d, which corresponds to f . Given a solution
to IP1 on Ω, d, there exists a unique ASWF on Ω, f , which corresponds to
d.

Proof. Consider a domain Ω and an ASWF on Ω, f . Determine d as follows.
Given (x, y) ∈ NTR and S ∈ E , consider P ∈ Ωn such that xpiy, for all
i ∈ S, and ypix, for all i ∈ Sc. Let dS(x, y) = 1 if xP (f(P))y, dS(x, y) =

1
2

if xI(f(P))y, dS(x, y) = 0 if yP (f(P))x. Then, for each (x, y) ∈ NTR and
for each S ∈ E , we have xP (f(P))y if and only if dS(x, y) = 1, xI(f(P))y
if and only if dS(x, y) = 1

2 , yP (f(P))x if and only if dS(x, y) = 0, for
all P ∈ Ωn such that xpiy, for all i ∈ S, and ypix, for all i ∈ Sc, as
f satisfies IIA. d satisfies (1), as f(P) satisfies PO, and (2), as f(P) is a
complete binary relation on A, for all P ∈ Ωn. Consider a triple x, y, z, and
disjoint and possibly empty sets A,B,C,U, V,W ∈ E whose union includes
all agents and which satisfy Conditions (∗). Moreover, consider P ∈ Ωn.
Then, by Conditions (∗), we have: xpiy, for all i ∈ A ∪ U ∪ V ; ypix, for all
i ∈ (A∪U ∪V )c; ypiz, for all i ∈ B ∪U ∪W ; zpiy, for all i ∈ (B ∪U ∪W )c;
zpix, for all i ∈ C ∪ V ∪W ; xpiz, for all i ∈ (C ∪ V ∪W )c. Suppose that
dA∪U∪V (x, y), dB∪U∪W (y, z), dC∪V ∪W (z, x) ∈ {0, 1} and

dA∪U∪V (x, y) + dB∪U∪W (y, z) + dC∪V ∪W (z, x) > 2.
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Then, we have xP (f(P))yP (f(P))z and zP (f(P))x, a contradiction. Sup-
pose that dA∪U∪V (x, y) = 1

2 and

dA∪U∪V (x, y) + dB∪U∪W (y, z) + dC∪V ∪W (z, x) <
3

2
.

Consider the following three cases. First, dB∪U∪W (y, z) = 0 and
dC∪V ∪W (z, x) = 0. Then, we have zP (f(P))yI(f(P))x and xP (f(P))z, a
contradiction. Second, dB∪U∪W (y, z) = 1

2 and dC∪V ∪W (z, x) = 0. Then, we
have xI(f(P))yI(f(P))z and xP (f(P))z, a contradiction. Third,
dB∪U∪W (y, z) = 0 and dC∪V ∪W (z, x) = 1

2 . Then, we have
zI(f(P))xI(f(P))y and zP (f(P))y, a contradiction. Suppose now that
dA∪U∪V (x, y) = 1

2 and

dA∪U∪V (x, y) + dB∪U∪W (y, z) + dC∪V ∪W (z, x) >
3

2
.

Consider the following three cases. First, dB∪U∪W (y, z) = 1 and
dC∪V ∪W (z, x) = 1. Then, we have xI(f(P))yP (f(P))z and zP (f(P))x, a
contradiction. Second, dB∪U∪W (y, z) = 1

2 and dC∪V ∪W (z, x) = 1. Then, we
have xI(f(P))yI(f(P))z and zP (f(P))x, a contradiction. Third,
dB∪U∪W (y, z) = 1 and dC∪V ∪W (z, x) = 1

2 . Then, we have
xI(f(P))yP (f(P))z and zI(f(P))x, a contradiction. Therefore, d satisfies
(3) and (4). Hence, d is a solution to IP1 on Ω which corresponds to f .
Suppose that d is not unique. Then, there exist a solution to IP1 on Ω, d′,
(x, y) ∈ NTR, and S ∈ E such that dS(x, y) 6= d′S(x, y). Consider P ∈ Ωn

such that xpiy, for all i ∈ S, and ypix, for all i ∈ Sc. Then, we have
xP (f(P))y and xI(f(P))y, or, yP (f(P))x and xI(f(P))y, or, xP (f(P))y
and yP (f(P))x, a contradiction. But then, d is unique. Now consider
a solution to IP1 on Ω, d. Determine f as follows. Given (x, y) ∈ TR,
let xP (f(P))y, for all P ∈ Ωn. Given (x, y) ∈ NTR and P ∈ Ωn, let
S ∈ E be the set of agents such that xpiy, for all i ∈ S, and ypix, for
all i ∈ Sc. Let xP (f(P))y if dS(x, y) = 1, xI(f(P))y if dS(x, y) =

1
2 , and

yP (f(P))x if dS(x, y) = 0. f(P) is a complete binary relation on A, for
all P ∈ Ωn, by construction and by (2). Now, we show that f(P) is also
a transitive binary relation on A, for all P ∈ Ωn. Consider a triple x, y, z
and a preference profile P ∈ Ωn. Then, there exist three nonempty sets
H, I, J such that xpiy, for all i ∈ H, ypix, for all i ∈ Hc, ypiz, for all
i ∈ I, zpiy, for all i ∈ Ic, zpix, for all i ∈ J , xpiz, for all i ∈ Jc. Let
A = H \ (I ∪ J), B = I \ (H ∪ J), C = J \ (H ∪ I), U = H ∩ I, V = H ∩ J ,
W = I ∩ J . Then, A,B,C,U, V,W ∈ E are disjoint sets of agents whose
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union includes all agents and which satisfy Conditions (∗). Moreover, they
satisfy A ∪ U ∪ V = H, B ∪ U ∪ W = I, C ∪ V ∪ W = J . Consider the
following eight cases. First, xP (f(P))yP (f(P))z and zP (f(P))x. Then,
dA∪U∪V (x, y) = 1, dB∪U∪W (y, z) = 1, dC∪V ∪W )(z, x) = 1, and

dA∪U∪V (x, y) + dB∪U∪W (y, z) + dC∪V ∪W (z, x) > 2,

contradicting (3). Second, xP (f(P))yP (f(P))z and xI(f(P))z. Then,
dC∪V ∪W )(z, x) =

1
2 and

dA∪U∪V (x, y) + dB∪U∪W (y, z) + dC∪V ∪W (z, x) >
3

2
,

contradicting (4). Third, xI(f(P))yP (f(P))z and zP (f(P))x. Then,
dA∪U∪V (x, y) = 1

2 and

dA∪U∪V (x, y) + dB∪U∪W (y, z) + dC∪V ∪W (z, x) >
3

2
,

contradicting (4). Fourth, xI(f(P))yP (f(P))z and xI(f(P))z. Then,
dA∪U∪V (x, y) = 1

2 and

dA∪U∪V (x, y) + dB∪U∪W (y, z) + dC∪V ∪W (z, x) >
3

2
,

contradicting (4). Fifth, xP (f(P))yI(f(P))z and zP (f(P))x. Then,
dB∪U∪W (y, z) = 1

2 and

dA∪U∪V (x, y) + dB∪U∪W (y, z) + dC∪V ∪W (z, x) >
3

2
,

contradicting (4). Sixth, xP (f(P))yI(f(P))z and xI(f(P))z. Then,
dB∪U∪W (y, z) = 1

2 and

dA∪U∪V (x, y) + dB∪U∪W (y, z) + dC∪V ∪W (z, x) >
3

2
,

contradicting (4). Seventh, xI(f(P))yI(f(P))z and xP (f(P))z. Then,
dA∪U∪V (x, y) = 1

2 and

dA∪U∪V (x, y) + dB∪U∪W (y, z) + dC∪V ∪W (z, x) <
3

2
,
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contradicting (4). Eighth, xI(f(P))yI(f(P))z and zP (f(P))x. Then,
dA∪U∪V (x, y) = 1

2 and

dA∪U∪V (x, y) + dB∪U∪W (y, z) + dC∪V ∪W (z, x) >
3

2
,

contradicting (4). f satisfies PO as, for all (x, y) ∈ TR, we have xp(f(P))y,
for all P ∈ Ωn; moreover, for all (x, y) ∈ NTR and for all P ∈ Ωn, xpiy,
for all i ∈ E, implies xP (f(P))y, by (1). f satisfies IIA as, for each (x, y) ∈
NTR and for each S ∈ E , we have xP (f(P))y if and only if dS(x, y) =
1, xI(f(P))y if and only if dS(x, y) = 1

2 , and yP (f(P))x if and only if
dS(x, y) = 0, for all P ∈ Ωn such that xpiy, for all i ∈ S, and ypix, for all
i ∈ Sc. Hence, f is an ASWF on Ω, which corresponds to d. Suppose that
f is not unique. Then, there exist an ASWF on Ω, f ′, (x, y) ∈ NTR and
P ∈ Ωn such that we have xf(P)y but not xf ′(P)y. Let S ∈ E be the set
such that xpiy, for all i ∈ S, and ypix, for all i ∈ Sc. Then, dS(x, y) = 1
and dS(x, y) = 0, or, dS(x, y) = 1

2 and dS(x, y) = 0, a contradiction. But
then, f is unique.

We introduce now a second ternary IP on Ω, which incorporates - like
Sethuraman et al.’s IP0′ - a reformulation of Kalai and Muller’s Conditions
I-IV. In constructing it, we draw the consequences of Propositions 1 and 2
and eliminate the redundancies inherent in Sethuraman et al.’s IP0′. In fact,
this second ternary IP - which we will call IP1′ - consists of constraints (1),
(2), and the following four logically independent constraints:

dS(x, y) ≤ dS(x, z), (5)

if dS(x, y) ∈ {0, 1};
dS(x, y) < dS(x, z), (6)

if ds(x, y) =
1
2 , for all triples x, y, z such that there exist p,q ∈ Ω satisfying

xpypz and yqzqx, and for all S ∈ E ;
dS(x, y) + dS(y, z) ≤ 1 + dS(x, z), (7)

if ds(x, y), ds(y, z) ∈ {0, 1};

dS(x, y) + dS(y, z) =
1

2
+ dS(x, z), (8)

if dS(x, y) = 1
2 or dS(y, z) = 1

2 , for all triples x, y, z such that there exist
p,q ∈ Ω satisfying xpypz and zqyqx, and for all S ∈ E . 3

3We notice that, in our formulation of (7) and (8), we suppose that there exist p,q ∈ Ω
which satisfy xpypz and zqyqx, whereas Sethuraman et al. (2003), in their formulation
of (vii) and (viii), supposed that there exists only p ∈ Ω which satisfies xpypz.
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In the remainder of this section, we prove two propositions which estab-
lish the relationships between IP1 and IP1′.

Proposition 3. If d is a solution to IP1 on Ω, then it is a solution to IP1′

on the same Ω.

Proof. Let d be a solution to IP1 on Ω. Consider a triple x, y, z and S ∈ E .
Suppose that there exist p,q ∈ Ω which satisfy xpypz and yqzqx. Let
U = S, W = Sc, and A = B = C = V = ∅. Then, A,B,C,U, V,W are sets
whose union includes all agents and which satisfy Conditions (∗). Suppose
that dS(x, y) ∈ {0, 1} and dS(x, y) > dS(x, z). Consider the following two
cases. First, dS(x, z) ∈ {0, 1}. Then,

dU (x, y) + dU∪W (y, z) + dW (z, x) > 2,

contradicting (3). Second, dS(x, z) =
1
2 . Then,

dU (x, y) + dU∪W (y, z) + dW (z, x) >
3

2
,

contradicting (4). Therefore, d satisfies (5). Suppose now that dS(x, y) =
1
2

and dS(x, y) ≥ dS(x, z). Then,

dU (x, y) + dU∪W (y, z) + dW (z, x) >
3

2
,

contradicting (4). Therefore, d satisfies (6). Consider a triple x, y, z and
S ∈ E . Suppose that there exist p,q ∈ Ω satisfying xpypz and zqyqx.
Let C = Sc, U = S, and A = B = V = W = ∅. Then, A,B,C,U, V,W
are sets whose union includes all agents and which satisfy Conditions (∗).
Suppose that dS(x, y), dS(y, z) ∈ {0, 1} and dS(x, y)+dS(y, z) > 1+dS(x, z).
Consider the following two cases. First, dS(x, z) ∈ {0, 1}. Then,

dU (x, y) + dU (y, z) + dC(z, x) > 2,

contradicting (3). Second, dS(x, z) =
1
2 . Then,

dU (x, y) + dU (y, z) + dC(z, x) >
3

2
,

contradicting (4). Therefore, d satisfies (7). Suppose now that dS(x, y) =
1
2

and dS(x, y) + dS(y, z) <
1
2 + dS(x, z). Then,

dU (x, y) + dU (y, z) + dC(z, x) <
3

2
,
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contradicting (4). Suppose that dS(x, y) = 1
2 and dS(x, y) + dS(y, z) >

1
2 + dS(x, z). Then,

dU (x, y) + dU (y, z) + dC(z, x) >
3

2
,

contradicting (4). Therefore, d satisfies (8). Hence, d is a solution to IP1′

on Ω.

The following result shows that the converse of Proposition 3 holds - and
IP1 and IP1′ coincide - when n = 2.

Proposition 4. Let n = 2. If d is a solution to IP1′ on Ω, then it is a
solution to IP1 on the same Ω.

Proof. Let n = 2. Let d be a solution to IP1′ on Ω. Consider a triple
x, y, z and disjoint and possibly empty sets A,B,C,U, V,W ∈ E whose
union includes all agents and which satisfy Conditions (∗). Suppose that
dA∪U∪V (x, y), dB∪U∪W (y, z), dC∪V ∪W (z, x) ∈ {0, 1} and

dA∪U∪V (x, y) + dB∪U∪W (y, z) + dC∪V ∪W (z, x) > 2.

Consider the case where A 6= ∅ and W 6= ∅. Then, there exist p,q ∈ Ω
satisfying xpzpy and yqzqx. Suppose that A = {1} and W = {2}. Then,

d{2}(y, z) + d{2}(z, x) > 1 + d{2}(y, x),

contradicting (7). The cases where B 6= ∅, V 6= ∅, and C 6= ∅, U 6= ∅
lead, mutatis mutandis, to the same contradiction. Consider the case where
U 6= ∅ and V 6= ∅. Then, there exist p,q ∈ Ω satisfying xpypz and zqxqy.
Suppose that U = {1} and V = {2}. Then,

d{2}(z, x) > d{2}(z, y),

contradicting (5). The cases where V 6= ∅, W 6= ∅, and U 6= ∅, W 6= ∅,
lead, mutatis mutandis, to the same contradiction. Therefore, d satisfies
(3). Suppose that dA∪U∪V (x, y) = 1

2 and

dA∪U∪V (x, y) + dB∪U∪W (y, z) + dC∪V ∪W (z, x) <
3

2
.

Consider the case where A 6= ∅ and B 6= ∅. Then, there exist p,q ∈ Ω
satisfying xpzpy and yqxqz. Suppose that A = {1} and B = {2}. Then,
d{2}(y, x) = 1

2 and
d{2}(y, x) ≥ d{2}(y, z),
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contradicting (6). The case where A 6= ∅ and C 6= ∅ leads, mutatis mutandis,
to the same contradiction. Consider the case whereA 6= ∅ andW 6= ∅. Then,
there exist p,q ∈ Ω satisfying xpzpy and yqzqx. Suppose that A = {1}
and W = {2}. Suppose that d{2}(y, z) = 0 and d{2}(z, x) = 0. Then,

d{1}(x, z) + d{1}(z, y) > 1 + d{1}(x, y),

contradicting (7). Suppose that d{2}(y, z) = 1
2 and d{2}(z, x) = 0. Then,

d{2}(y, z) + d{2}(z, x) <
1

2
+ d{2}(y, x),

contradicting (8). Consider the case where U 6= ∅ and C 6= ∅. Then, there
exist p,q ∈ Ω satisfying xpypz and zqyqx. Suppose that U = {1} and
C = {2}. Then, d{1}(x, y) = 1

2 and

d{1}(x, y) + d{1}(y, z) <
1

2
+ d{1}(x, z),

contradicting (8). The case where V 6= ∅ and B 6= ∅ leads, mutatis mutandis,
to the same contradiction. Suppose that dA∪U∪V (x, y) = 1

2 and

dA∪U∪V (x, y) + dB∪U∪W (y, z) + dC∪V ∪W (z, x) >
3

2
.

Consider the case where A 6= ∅ and W 6= ∅. Then, there exist p,q ∈ Ω
satisfying xpzpy and yqzqx. Suppose that A = {1} and W = {2}. Suppose
that d{2}(y, z) = 1 and d{2}(z, x) = 1. Then,

d{2}(y, z) + d{2}(z, x) > 1 + d{2}(y, x),

a contradicting (7). Suppose that d{2}(y, z) = 1
2 and d{2}(z, x) = 1. Then,

d{2}(y, z) + d{2}(z, x) >
1

2
+ d{2}(y, x),

contradicting (8). Consider the case where U 6= ∅ and C 6= ∅. Then, there
exist p,q ∈ Ω satisfying xpypz and zqyqx. Suppose that U = {1} and
C = {2}. Then, d{1}(x, y) = 1

2 and

d{1}(x, y) + d{1}(y, z) >
1

2
+ d{1}(x, z),

contradicting (8). The case where V 6= ∅ and B 6= ∅ leads, mutatis mutandis,
to the same contradiction. Consider the case where U 6= ∅ andW 6= ∅. Then,
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there exist p,q ∈ Ω satisfying xpypz and yqzqx. Suppose that U = {1}
and W = {2}. Then, d{1}(x, y) = 1

2 and

d{1}(x, y) ≥ d{1}(x, z),

contradicting (6). The case where V 6= ∅ and W 6= ∅ leads, mutatis mu-
tandis, to the same contradiction. Therefore, d satisfies (4). Hence, d is a
solution to IP1 on Ω.

5 Integer programming and nondictatorial Arro-
vian social welfare functions without ties: a new
proof of Kalai and Muller’s Theorem 2

In this section and the next, we use the integer programs developed above
to deal with the issues concerning the dictatorship property of ASWFs. To
begin with, we focus here on ASWFs without ties.

Kalai and Muller (1977) were the first who provided a complete charac-
terization of the domains of antisymmetric preference orderings which admit
nondictatorial ASWFs without ties. They did this by means of two theo-
rems. In their Theorem 1, they showed that, for a given domain Ω, there
exists a nondictatorial ASWF without ties for n > 2 if and only if, for the
same Ω, there exists a nondictatorial ASWF without ties for n = 2. In
their Theorem 2, Kalai and Muller showed that there exists a nondictatorial
ASWF without ties on Ω for n ≥ 2 if and only if Ω satisfies the conditions
of KM decomposability introduced in Section 2.

Sethuraman et al. opened the way to an analysis of the problem of
dictatorship in terms of integer programming. More precisely, in the 2003
paper, they showed a result establishing a be-univocal relation between the
solutions of IP0 for n = 2 and its solutions for n > 2. Since their arguments
can straightforwardly be re-expressed in terms of IP1, their result can be
stated as follows.

Theorem 2. There exists a nondictatorial binary solution to IP1 on Ω, d,
for n = 2, if and only if there exists a nondictatorial binary solution to IP1
on Ω, d∗, for n > 2.

Kalai and Muller’s Theorem 1 can therefore be obtained, by our Theorem
1, as a corollary of Theorem 2.
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Corollary 1. There exists a nondictatorial ASWF without ties on Ω, f ,
for n = 2, if and only if there exists a nondictatorial ASWF without ties on
Ω, f∗, for n > 2.

Now, we go forward along the line opened by Sethuraman et al. (2003),
providing a characterization of domains admitting nondictatorial binary so-
lutions to IP1. As it will be made clear shortly, this result is the heart of
the new, simpler proof of Kalai and Muller’s Theorem 2 for ASWFs without
ties, in terms of integer programming.

In order to obtain our characterization theorem, we need to introduce
a reformulation of Kalai and Muller’s concept of decomposability suitable
to be applied within the analytical context of IP1. We will show below
that this reformulation is equivalent to the original version proposed by
Kalai and Muller. Our reformulation is based on the existence of two sets,
R1, R2 ∈ A2 - instead of only one - which satisfy the two conditions we are
going to introduce.

Consider a set R ⊂ A2. Consider the following conditions on R.

Condition 1. For all triples x, y, z, if there exist p,q ∈ Ω satisfying xpypz
and yqzqx, then (x, y) ∈ R implies that (x, z) ∈ R.

Condition 2. For all triples x, y, z, if there exist p,q ∈ Ω satisfying xpypz
and zqyqx, then (x, y) ∈ R and (y, z) ∈ R imply that (x, z) ∈ R.

A domain Ω is said to be decomposable if and only if there exist two sets
R1 and R2, with ∅ $ Ri $ NTR, i = 1, 2, such that, for all (x, y) ∈ NTR, we
have (x, y) ∈ R1 if and only if (y, x) /∈ R2; moreover, Ri satisfies Conditions
1 and 2.

With regard to this definition of a decomposable domain, let us notice the
main differences with Kalai and Muller’s original notion, introduced to make
it compatible with the integer programming analytical setting: Conditions
1 and 2 differ from Conditions I and II as the former refer to triples, rather
than pairs, of alternatives. Moreover, Condition 2 is reformulated in terms
of a pair of preference orderings - instead of only one - consistently with
our formulation of constraints (7) and (8). Also, our formulation does not
require that R1 and R2 contain TR, whereas Kalai and Muller’s one requires
that R contains TR. In particular, let us stress that our definition requires
that R1 and R2 satisfy only two conditions - instead of four, as in Kalai
and Muller’s version. As Corollary 3 below makes it clear, this implies a
redundancy of Kalai and Muller’s Conditions II and IV, which parallels the
redundancy of constraints (v) and (vii) proved in Propositions 2 and 3.
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On the basis of our reformulation of the concept of decomposability, we
state and prove now the characterization theorem.

Theorem 3. There exists a nondictatorial binary solution to IP1′ on Ω, d,
for n = 2, if and only if Ω is decomposable.

Proof. Let d be a nondictatorial binary solution to IP1′ on Ω, for n = 2.
Let R1 = {(x, y) ∈ NTR : d{1}(x, y) = 1} and R2 = {(x, y) ∈ NTR :
d{2}(x, y) = 1}. Then, for all (x, y) ∈ NTR, (x, y) ∈ R1 if and only if
(y, x) /∈ R2, as d satisfies (2). Moreover, ∅ $ Ri $ NTR, i = 1, 2, as
d is nondictatorial. Consider a triple x, y, z and suppose that there exist
p,q ∈ Ω satisfying xpypz and yqzqx. Moreover, suppose that (x, y) ∈ R1

and (x, z) /∈ R1 Then, d{1}(x, y) = 1 and

d{1}(x, y) > d{1}(x, z),

contradicting (5). Hence, Ri, i = 1, 2, satisfies Condition 1. Consider a
triple x, y, z and suppose that there exist p,q ∈ Ω satisfying xpypz and
zqyqx. Moreover, suppose that (x, y), (y, z) ∈ R1, and (x, z) /∈ R1. Then,
d{1}(x, y) = 1, d{1}(y, z) = 1, and

d{1}(x, y) + d{1}(y, z) > 1 + d{1}(x, z),

contradicting (7). Hence, Ri, i = 1, 2, satisfies Condition 2. We have proved
that Ω is decomposable. Conversely, suppose that Ω is decomposable. Then,
there exist two sets R1 and R2, with ∅ $ Ri $ NTR, i = 1, 2, such that, for
all (x, y) ∈ NTR, we have (x, y) ∈ R1 if and only if (y, x) /∈ R2; moreover, Ri

satisfies Conditions 1 and 2. Determine d as follows. For each (x, y) ∈ NTR,
let d∅(x, y) = 0, dE(x, y) = 1; moreover, let d{i}(x, y) = 1 if and only if
(x, y) ∈ Ri; d{i}(x, y) = 0 if and only if (x, y) /∈ Ri, for i = 1, 2. Then, d
satisfies (1) and (2) as, for all (x, y) ∈ NTR, we have (x, y) ∈ R1 if and only
if (y, x) /∈ R2. Consider a triple x, y, z and suppose that there exist p,q ∈ Ω
satisfying xpypz and yqzqx. Moreover, suppose that

d{1}(x, y) > d{1}(x, z).

Then, we have (x, y) ∈ R1 and (x, z) /∈ R1, contradicting Condition 1.
Therefore, d satisfies (5). Consider a triple x, y, z and suppose that there
exist p,q ∈ Ω satisfying xpypz and zqyqx. Moreover, suppose that

d{1}(x, y) + d{1}(y, z) > 1 + d{1}(x, z).

Then, we have (x, y), (y, z) ∈ R1 and (x, z) /∈ R1, contradicting Condition
2. Therefore, d satisfies (7). d is nondictatorial as ∅ $ Ri $ NTR, i = 1, 2.
Hence, d is a nondictatorial binary solution to IP1′ on Ω.
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The previous result provides a simplified proof of Kalai and Muller’s
Theorem 2 since this theorem can be immediately obtained as a corollary of
Theorem 3.

Corollary 2. There exists a nondictatorial ASWF without ties on Ω, f ,
for n ≥ 2, if and only if Ω is decomposable.

Proof. It is a straightforward consequence of Propositions 3 and 4, Theo-
rems 1 and 3, and Corollary 1.

From Theorem 3, we obtain a further corollary, which - as anticipated
above - establishes the equivalence between our notion of decomposability
and Kalai and Muller’s notion, and implies that Kalai and Muller’s Condi-
tions II and IV are redundant.

Corollary 3. Ω is KM decomposable if and only if it s decomposable.

Proof. It is an immediate consequence of Kalai and Muller’s Theorem 2
and of Corollary 2.

6 Integer programming and nondictatorial Arro-
vian social welfare functions with ties: a new
characterization theorem

In the analysis developed above, the integer programming setup - in par-
ticular the IP1 introduced in Section 4 - has proved to be an effective tool
in order to provide simplified demonstrations of Kalai and Muller’s crucial
results on ASWFs without ties.

In this section, we further exploit IP1 to progress in the investigation
of nondictatorship. As already reminded, Arrow’s impossibility theorem is
established for ASWFs admitting ties in their range and defined on the unre-
stricted domain of preference orderings. Kalai and Muller’s characterization
theorem overcomes Arrow’s impossibility result by considering ASWFs with-
out ties in their range, defined on the domain of antisymmetric preference
orderings.

We take a step forward along this way: our main theorem establishes a
characterization of the domains of antisymmetric preference orderings ad-
mitting nondictatorial ASWFs with ties.

We start our analysis by proving the following result, which extends
Theorem 2 above to the case of ternary solutions to IP1.
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Theorem 4. There exists a nondictatorial ternary solution to IP1 on Ω, d,
for n = 2, if and only if there exists a nondictatorial ternary solution to IP1
on Ω, d∗, for n > 2.

Proof. Let d be a nondictatorial ternary solution to IP1 on Ω for n = 2.
Determine d∗ as follows. Given (x, y) ∈ NTR and S ∈ E , let d∗S(x, y) = 1
if 1, 2 ∈ S; dS(x, y) = 0 if 1, 2 ∈ Sc; d∗S(x, y) = d{1}(x, y) and d∗Sc(y, x) =
d{2}(y, x) if 1 ∈ S and 2 ∈ Sc. Then, it is straightforward to verify that
d∗ satisfies (1)-(4) and that is nondictatorial. Hence, d∗ is a nondictatorial
ternary solution to IP1 on Ω, for n > 2. Conversely, let d∗ be a nondictatorial
ternary solution to IP1 on Ω for n > 2. Determine d as follows. Consider
(u, v) ∈ NTR and S̄ ∈ E such that d∗̄

S
(u, v) = 1

2 . Given (x, y) ∈ NTR, let
d{1,2}(x, y) = 1, d∅(x, y) = 0, d{1}(x, y) = d∗̄

S
(x, y), d{2}(x, y) = d∗̄

S
(x, y).

Then, it is straightforward to verify that d satisfies (1) and (2). Moreover,
by Proposition 3, d satisfies (5)-(8) as d∗ is a solution to IP1 on Ω. But then,
d is a solution to IP1′ on Ω and this, in turn, implies that it is a solution to
IP1 on Ω, by Proposition 4. Finally, d is nondictatorial as d{1}(u, v) = 1

2 .
Hence, d is a nondictatorial ternary solution to IP1 on Ω, for n = 2

From Theorem 4, we obtain the following corollary, which extends Kalai
and Muller’s Theorem 1 to the case of ASWFs with ties. It is an immediate
consequence of our Theorem 1 in Section 4.

Corollary 4. There exists a nondictatorial ASWF with ties on Ω, f , for
n = 2, if and only if there exists a nondictatorial ASWF with ties on Ω, f∗,
for n > 2.

In order to obtain our characterization theorem for ASWFs with ties, we
need to introduce a new notion of decomposability, stricter than the one
introduced in Section 5 (which was shown to be equivalent to the notion of
KM decomposability). We define it as “strict decomposability.” The next
section will be devoted to establish the exact relationship between the two
notions of decomposability and strict decomposability.

Then, consider a set R ⊂ A2. Consider the following conditions on R.

Condition 3. There exists a set R∗ ⊂ A2, with R ∩ R∗ = ∅, such that, for
all triples x, y, z, if there exist p,q ∈ Ω satisfying xpypz and yqzqx, then
(x, y) ∈ R∗ implies that (x, z) ∈ R.

Condition 4. There exists a set R∗ ⊂ A, with R ∩ R∗ = ∅, such that, for
all triples of alternatives x, y, z, if there exist p,q ∈ Ω satisfying xpypz
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and zqyqx, then (x, y) ∈ R and (y, z) ∈ R∗ imply that (x, z) ∈ R, and
(x, y) ∈ R∗ and (y, z) ∈ R imply that (x, z) ∈ R.

A domain Ω is said to be strictly decomposable if and only if there exist
four sets R1, R2, R

∗
1, and R∗

2, with Ri $ NTR, ∅ $ R∗
i ⊂ NTR, i = 1, 2,

such that, for all (x, y) ∈ NTR, we have (x, y) ∈ R1 if and only if (x, y) /∈ R∗
1

and (y, x) /∈ R2; (x, y) ∈ R∗
1 if and only if (y, x) ∈ R∗

2; moreover, Ri, i = 1, 2,
satisfies Condition 1; Ri and R∗

i , i = 1, 2, satisfy Condition 2; each pair
(Ri,R

∗
i ), i = 1, 2, satisfies Conditions 3 and 4.

On the basis of the notion of strict decomposability, we provide now the
characterization of domains admitting nondictatorial ternary solutions to
IP1.

Theorem 5. There exists a nondictatorial ternary solution to IP1′ on Ω,
d, for n = 2, if and only if Ω is strictly decomposable.

Proof. Let d be a nondictatorial ternary solution to IP1′ on Ω, for n = 2.
Let R1 = {(x, y) ∈ NTR : d{1}(x, y) = 1}, R2 = {(x, y) ∈ NTR :

d{2}(x, y) = 1}, R∗
1 = {(x, y) ∈ NTR : d{1}(x, y) = 1

2}, R∗
2 = {(x, y) ∈

NTR : d{2}(x, y) = 1
2}. Consider (x, y) ∈ NTR. Suppose that (x, y) ∈ R1

and (x, y) ∈ R∗
1. Then, d{1}(x, y) = 1 and d{1}(x, y) = 1

2 , a contradic-
tion. Suppose that (x, y) ∈ R1 and (y, x) ∈ R2. Then, d{1}(x, y) = 1 and
d{2}(y, x) = 1, contradicting (2). Suppose that (x, y) /∈ R∗

1 and (y, x) /∈ R2

and (x, y) /∈ R1. Then, d{1}(x, y) 6= 1
2 , d{1}(x, y) 6= 0, and d{1}(x, y) 6= 1, a

contradiction. Suppose that (x, y) ∈ R∗
1 and (y, x) /∈ R∗

2. Then, d{1}(x, y) =
1
2 and d{2}(y, x) 6= 1

2 , contradicting (2). Hence, for all (x, y) ∈ NTR,
(x, y) ∈ R1 if and only if (x, y) /∈ R∗

1 and (y, x) /∈ R2; (x, y) ∈ R∗
1 if and only

if (y, x) ∈ R∗
2. Suppose that R1 = NTR. Then, d is dictatorial, a contra-

diction. Hence, Ri $ NTR, i = 1, 2. Suppose that R∗
i = ∅, i = 1, 2. Then,

d is a binary solution, a contradiction. Hence, ∅ $ R∗
i ⊂ NTR. Moreover,

by using the same argument developed in the proof of Theorem 3, it can
be shown that Ri, i = 1, 2, satisfies Conditions 1 and 2. Consider a triple
x, y, z and suppose that there exist p,q ∈ Ω satisfying xpypz and zqyqx.
Moreover, suppose that (x, y) ∈ R∗

1, (y, z) ∈ R∗
1, and (x, z) /∈ R∗

1. Then,
d{1}(x, y) = 1

2 , d{1}(y, z) =
1
2 , and

d{1}(x, y) + d{1}(y, z) 6=
1

2
+ d{1}(x, z),

contradicting (8). Hence, R∗
i satisfies Condition 2, i = 1, 2. Consider a triple

x, y, z and suppose that there exist p,q ∈ Ω satisfying xpypz and yqzqx.
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Moreover, suppose that (x, y) ∈ R∗
1 and (x, z) /∈ R1. Then, d{1}(x, y) = 1

2
and

d{1}(x, y) ≥ d{1}(x, z),

contradicting (6). Hence, each pair (Ri, R
∗
i ), i = 1, 2, satisfies Condition

3. Consider a triple x, y, z and suppose that there exist p,q ∈ Ω satisfying
xpypz and zqyqx. Moreover, suppose that (x, y) ∈ R1, (y, z) ∈ R∗

1, and
(x, z) /∈ R1. Then, d{1}(y, z) = 1

2 and

d{1}(x, y) + d{1}(y, z) 6=
1

2
+ d{1}(x, z),

contradicting (8). Now, suppose that (x, y) ∈ R∗
1, (y, z) ∈ R1, and (x, z) /∈

R1. Then, d{1}(x, y) = 1
2 and

d{1}(x, y) + d{1}(y, z) 6=
1

2
+ d{1}(x, z),

contradicting (8). Hence, each pair (Ri, R
∗
i ), i = 1, 2, satisfies Condition

4. We have proved that Ω is strictly decomposable. Conversely, suppose
that Ω is strictly decomposable. Then, there exist four sets R1, R2, R

∗
1,

and R∗
2, with Ri $ NTR, ∅ $ R∗

i ⊂ NTR, i = 1, 2, such that, for all
(x, y) ∈ NTR, we have (x, y) ∈ R1 if and only if (x, y) /∈ R∗

1 and (y, x) /∈ R2;
(x, y) ∈ R∗

1 if and only if (y, x) ∈ R∗
2; moreover, Ri, i = 1, 2, satisfies

Condition 1; Ri and R∗
i , i = 1, 2, satisfy Condition 2; each pair (Ri,R

∗
i ),

i = 1, 2, satisfies Conditions 3 and 4. Determine d as follows. For each
(x, y) ∈ NTR, let d∅(x, y) = 0, dE(x, y) = 1; d{i}(x, y) = 1 if and only if

(x, y) ∈ Ri; d{i}(x, y) = 1
2 if and only if (x, y) ∈ R∗

i ; d{i}(x, y) = 0 if and only
if, (x, y) /∈ Ri and (x, y) /∈ R∗

i , for i = 1, 2. Then, d satisfies (1) and (2) as,
for all (x, y) ∈ NTR, (x, y) ∈ R1 if and only if (x, y) /∈ R∗

1 and (y, x) /∈ R2,
(x, y) ∈ R∗

1 if and only if (y, x) ∈ R∗
2. Moreover, it can be shown that d

satisfies (5) and (7), by using the same arguments developed in the proof
of Theorem 3. Consider a triple x, y, z and suppose there exist p,q ∈ Ω
satisfying xpypz and yqzqx. Moreover, suppose that d{1}(x, y) = 1

2 and

d{1}(x, y) ≥ d{1}(x, z).

Then, (x, y) ∈ R∗
1 and (x, z) /∈ R1, contradicting Condition 3. Therefore,

d satisfies (6). Consider a triple x, y, z and suppose there exist p,q ∈ Ω
satisfying xpypz and zqyqx. Moreover, suppose that d{1}(x, y) = 1

2 and

d{1}(x, y) + d{1}(y, z) >
1

2
+ d{1}(x, z).
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Consider the following two cases. First, d{1}(y, z) = 1. Then, (x, y) ∈ R∗
1,

(y, z) ∈ R1, and (x, z) /∈ R1, contradicting Condition 4. Second, d{1}(y, z) =
1
2 . Then, (x, y) ∈ R∗

1, (y, z) ∈ R∗
1, and (x, z) /∈ R∗

1, contradicting Condition
2. Finally, suppose that d{1}(x, y) = 1

2 and

d{1}(x, y) + d{1}(y, z) <
1

2
+ d{1}(x, z).

Consider the following two cases. First, d{1}(y, z) = 0. Then, (z, y) ∈ R2,
(y, x) ∈ R∗

2, and (z, x) /∈ R2, contradicting Condition 4. Second, d{1}(y, z) =
1
2 . Then, (x, y) ∈ R∗

1, (y, z) ∈ R∗
1, and (x, z) /∈ R∗

1, contradicting Condition
2. Therefore, d satisfies (8). d is nondictatorial as ∅ $ R∗

i ⊂ NTR, i = 1, 2.
Hence, d is a nondictatorial ternary solution to IP1′ on Ω.

Our characterization theorem for ASWFs with ties follows from Theorem
1 as a corollary of Theorem 5. This corollary is the generalization of Kalai
and Muller’s Theorem 2 for ASWFs without ties.

Corollary 5. There exists a nondictatorial ASWF with ties on Ω, f , for
n ≥ 2, if and only if Ω is strictly decomposable.

Proof. It is an immediate consequence of Propositions 3 and 4, Theorems
1 and 5, and Corollary 4.

7 The relationship between decomposable and
strictly decomposable domains

In this section, we analyze the relationship between the notions of decompos-
able and strictly decomposable domain. The following example illustrates
the two notions.

Example 1. Let A = {a, b, c, d} and Ω = {p ∈ Σ : apbpcpd, cpdpapb,
dpcpbpa}. Then, Ω is decomposable and strictly decomposable.

Proof. Let us notice that NTR = A2. The triples x, y, z for which there
exist p,q ∈ Ω such that xpypz and yqzqx are c,a,b; d,a,b; a,c,d; b,c,d. The
triples x, y, z for which there exist p,q ∈ Ω such that xpypz and zqyqx
are a,b,c; a,b,d; a,c,d; b,c,d. Let R1 = {(a, b), (b, a), (c, d), (d, c)} and R2 =
{(a, c), (c, a), (a, d), (d, a), (b, c), (c, b), (b, d), (d, b)}. Then, we have ∅ $ Ri $
NTR, i = 1, 2. Moreover, for all (x, y) ∈ NTR, we have (x, y) ∈ R1 if and
only if (y, x) /∈ R2. R1 vacuously satisfies Conditions 1 and 2. R2 satisfies
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Condition 1 as we have: (a, c) ∈ R2 and (a, d) ∈ R2; (c, a) ∈ R2 and (c, b) ∈
R2; (d, a) ∈ R2 and (d, b) ∈ R2; (b, c) ∈ R2 and (b, d) ∈ R2. R2 vacuously
satisfies Condition 2. We have shown that Ω is decomposable. Now, let
V1 = {(a, b), (c, d)}, V2 = {(a, c), (c, a), (a, d), (d, a), (b, c), (c, b), (b, d), (d, b)},
V ∗
1 = {(b, a), (d, c)}, V ∗

2 = {(a, b), (c, d)}. Then, we have Vi $ NTR, i = 1, 2,
and ∅ $ V ∗

i ⊂ NTR, i = 1, 2. Moreover, for all (x, y) ∈ NTR, we have:
(x, y) ∈ V1 if and only if (x, y) /∈ V ∗

1 and (y, x) /∈ V2; (x, y) ∈ V ∗
1 if and only if

(y, x) ∈ V ∗
2 . V1 vacuously satisfies Conditions 1 and 2. V ∗

1 vacuously satisfies
Condition 2. Moreover, the pair (V1, V

∗
1 ) vacuously satisfies Conditions 3

and 4. V2 satisfies Conditions 1 and 2 as V2 = R2. V ∗
2 vacuously satisfies

Condition 2. The pair (V2, V
∗
2 ) vacuously satisfies Condition 3. Moreover,

it satisfies Condition 4 as we have: (a, c) ∈ V2, (c, d) ∈ V ∗
2 , and (a, d) ∈ V2;

(b, c) ∈ V2, (c, d) ∈ V ∗
2 , and (b, d) ∈ V2; (a, b) ∈ V ∗

2 , (b, c) ∈ V2, and
(a, c) ∈ V2; (a, b) ∈ V ∗

2 , (b, d) ∈ V2, and (a, d) ∈ V2. We have shown that Ω
is strictly decomposable.

The example above specifies a domain which is both decomposable and
strictly decomposable. Nonetheless, this is not the general case. In the
following, we will show, with a theorem and a further example, that a strictly
decomposable domain is always decomposable, but the converse is not true.

In order to obtain these results, we preliminarily show the following
theorem on the nondictatorial solutions to IP1′.

Theorem 6. If there exists a nondictatorial ternary solution to IP1′ on Ω,
d, for n = 2, then there exists a nondictatorial binary solution to IP1′ on Ω,
d̂, for n = 2.

Proof. Let d be a ternary solution to IP1′ on Ω, for n = 2. Determine
d′ as follows. Consider q ∈ Σ. For each (x, y) ∈ NTR, let: d′∅(x, y) = 0,
d′E(x, y)=1; d′{i}(x, y) = d{i}(x, y), if d{i}(x, y) ∈ {0, 1}, i = 1, 2; d′{1}(x, y) =
1 and d′{2}(y, x) = 0, if d{1}(x, y) = d{2}(y, x) = 1

2 and xqy. Then, it is

immediate to verify that d′ is a solution to IP1′ on Ω, for n = 2. Suppose
that d′ is nondictatorial. Then, d̂ = d′ is a nondictatorial binary solution
to IP1′ on Ω, for n = 2. Suppose that d′ is dictatorial: say, for example,
that, for all (x, y) ∈ NTR, dS(x, y) = 1, for all S containing agent 1. In
this case, we can say that agent 1 is the dictator for d′. Determine d′′ as
follows. Let q−1 ∈ Σ be an antisymmetric preference ordering such that,
for each (x, y) ∈ A2, xqy if and only if yq−1x. For each (x, y) ∈ NTR,
let: d′′∅(x, y) = 0, d′′E(x, y)=1; d′′{i}(x, y) = d{i}(x, y), if d{i}(x, y) ∈ {0, 1},
i = 1, 2; d′′{1}(x, y) = 1 and d′′{2}(y, x) = 0, if d{1}(x, y) = d{2}(y, x) = 1

2 and
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xq−1y. Then, it is immediate to verify that d̂ = d′′ is a binary solution to
IP1′ on Ω, for n = 2, and that agent 1 is not a dictator for d′′. Suppose that
agent 2 is a dictator for d′′. Consider (x, y) ∈ NTR such that d{1}(x, y) =
d{2}(y, x) = 1

2 . Suppose that yqx. This implies that d′{1}(x, y) = 0 and agent

1 is not a dictator for d′, a contradiction. But then, we must have that xqy.
Consider variables d{1}(y, x) and d{2}(x, y). Suppose that d{1}(y, x) = 1
and d{2}(x, y) = 0. Then, agent 2 is not a dictator for d′′, a contradiction.
Suppose that d{1}(y, x) = 0 and d{2}(x, y) = 1. Then, agent 1 is not a

dictator for d′. This implies that d{1}(y, x) = d{2}(x, y) = 1
2 and this, in

turn, implies that d′′{2}(x, y) = 0 and agent 2 is not a dictator of d′′, a

contradiction. Then, d̂ = d′′ is a nondictatorial binary solution to IP1′ on
Ω, for n = 2.

Again, we straightforwardly obtain a correspondent result for nondicta-
torial ASWFs as a corollary of Theorem 6. A first proof of this result is due
to Maskin (1979).

Corollary 6. If there exists a nondictatorial ASWF with ties on Ω, f , for
n ≥ 2, then there exists a nondictatorial ASWF without ties on Ω, f̂ , for
n ≥ 2.

Proof. It is an immediate consequence of Propositions 3 and 4, and of
Theorems 1, 2, 4, and 6.4

On the basis of the previous results, the following theorem can be im-
mediately proved.

Theorem 7. If a domain Ω is strictly decomposable, then it is decompos-
able.

Proof. Let Ω be a strictly decomposable domain. Then, by Theorem 5,
there exists a nondictatorial ternary solution to IP1′ on Ω, d, for n = 2. But
then, by Theorem 6, there exists a nondictatorial binary solution to IP1′ on
Ω, d̂, for n = 2. Hence, by Theorem 3, Ω is decomposable.

The following example shows that the converse of Theorem 7 does not hold.

Example 2. Let A = {a, b, c, d} and Ω = {p ∈ Σ : apbpcpd, cpapdpb,
dpcpbpa, bpdpapc}. Then, Ω is decomposable but it is not strictly decom-
posable.

4We notice that our version of Maskin’s Theorem 3 does not cover the case where
Ω ∩ (R \ P) 6= ∅.
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Proof. Let us notice that NTR = A2. The triples x, y, z for which there
exist p,q ∈ Ω such that xpypz and yqzqx are: c,a,b; c,b,a; a,b,d; a,d,b,;
d,a,c; d,c,a; b,c,d; b,d,c. The triples x, y, z for which there exist p,q ∈ Ω
such that xpypz and zqyqx are: a,b,c; c,a,b; a,b,d; a,d,b; a,c,d; c,a,d; b,c,d;
c,d,b. Let Ri = {(a, b), (a, c), (a, d), (b, c), (b, d), (c, d)}, i = 1, 2. Then, we
have ∅ $ Ri $ NTR, i = 1, 2. Moreover, for all (x, y) ∈ NTR, we have
(x, y) ∈ R1 if and only if (y, x) /∈ R2. Ri satisfies Condition 1, i = 1, 2, as
we have: (a, b) ∈ Ri and (a, d) ∈ Ri; (a, d) ∈ Ri and (a, b) ∈ Ri; (b, c) ∈ Ri

and (b, d) ∈ Ri; (b, d) ∈ Ri and (b, c) ∈ Ri, i = 1, 2. Ri satisfies Condition
2, i = 1, 2, as we have: (a, b) ∈ Ri, (b, c) ∈ Ri, and (a, c) ∈ Ri; (a, b) ∈ Ri,
(b, d) ∈ Ri, and (a, d) ∈ Ri; (a, c) ∈ Ri, (c, d) ∈ Ri, and (a, d) ∈ Ri;
(b, c) ∈ Ri, (c, d) ∈ Ri, and (b, d) ∈ Ri, i = 1, 2. We have shown that Ω is
decomposable. Now suppose that Ω is strictly decomposable. Then, there
exist four sets V1, V2, V

∗
1 , and V ∗

2 , with Vi $ NTR, ∅ $ V ∗
i ⊂ NTR, i = 1, 2,

such that, for all (x, y) ∈ NTR, we have: (x, y) ∈ V1 if and only if (x, y) /∈ V ∗
1

and (y, x) /∈ V2; (x, y) ∈ V ∗
1 if and only if (y, x) ∈ V ∗

2 . Moreover, Vi, i = 1, 2,
satisfies Condition 1; Vi and V ∗

i , i = 1, 2, satisfy Condition 2; each pair (Vi,
V ∗
i ), i = 1, 2, satisfies Conditions 3 and 4. Suppose that (a, b) ∈ V ∗

1 and
(b, a) ∈ V ∗

2 . Then, (a, d) ∈ V1 as the pair (V1, V
∗
1 ) satisfies Condition 3.

But then, (a, b) ∈ V1 as V1 satisfies Condition 1, a contradiction. Suppose
that (a, c) ∈ V ∗

1 and (c, a) ∈ V ∗
2 . Then, (c, b) ∈ V2 as the pair (V2, V

∗
2 )

satisfies Condition 3. But then, (c, a) ∈ V2 as V2 satisfies Condition 1, a
contradiction. Suppose that (a, d) ∈ V ∗

1 and (d, a) ∈ V ∗
2 . Then, (a, b) ∈ V1

as the pair (V1, V
∗
1 ) satisfies Condition 3. But then, (a, d) ∈ V1 as V1 satisfies

Condition 1, a contradiction. Suppose that (b, c) ∈ V ∗
1 and (c, b) ∈ V ∗

2 .
Then, (b, d) ∈ V1 as the pair (V1, V

∗
1 ) satisfies Condition 3. But then, (b, c) ∈

V1 as V1 satisfies Condition 1, a contradiction. Suppose that (b, d) ∈ V ∗
1 and

(d, b) ∈ V ∗
2 . Then, (b, c) ∈ V1 as the pair (V1, V

∗
1 ) satisfies Condition 3.

But then, (b, d) ∈ V1 as V1 satisfies Condition 1, a contradiction. Suppose
that (c, d) ∈ V ∗

1 and (d, c) ∈ V ∗
2 . Then, (d, a) ∈ V2 as the pair (V2, V

∗
2 )

satisfies Condition 3. But then, (d, c) ∈ V2 as V2 satisfies Condition 1, a
contradiction. Hence, V ∗

i = ∅, i = 1, 2, a contradiction. We have shown
that Ω is not strictly decomposable.
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